Skip to content

Commit

Permalink
hmrR_MotionCorrectTDDR
Browse files Browse the repository at this point in the history
Adding TDDR motion correction function. Ref: https://www.sciencedirect.com/science/article/pii/S1053811918308103
  • Loading branch information
mayucel committed Dec 13, 2023
1 parent 8fd1d55 commit 77b7953
Showing 1 changed file with 137 additions and 0 deletions.
137 changes: 137 additions & 0 deletions FuncRegistry/UserFunctions/hmrR_MotionCorrectTDDR.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
% SYNTAX:
% data_dod = hmrR_MotionCorrectTDDR(data_dod, mlActAuto, mlActMan)
%
% UI NAME:
% Motion_Correct_TDDR
%
% DESCRIPTION:
% Corrects motion artifacts by computing the temporal derivative of the dod signal,
% applying robust regression to reduce magnitude of outlying fluctuations, then
% integrating to get the corrected signal. This function follows the procedure described in:
% Fishburn, F. A. et al. (2019). Temporal Derivative Distribution Repair (TDDR): A motion correction method for fNIRS. NeuroImage, 184, 171-179.
%
%
% INPUTS:
% data_dod: SNIRF data structure containing delta_OD
% mlActAuto:
% mlActMan:
%
% OUTPUTS:
% data_dod: SNIRF data structure containing delta_OD after motion correction,
% same size as dod (Channels that are not in the active ml remain unchanged)
%
% USAGE OPTIONS:
% Motion_Correct_TDDR: dod = hmrR_MotionCorrectTDDR(dod, mlActAuto, mlActMan)
%
% PARAMETERS:
%
% PREREQUISITES:
% Intensity_to_Delta_OD: dod = hmrR_Intensity2OD( intensity )
%
% LOG:
% Script by Frank Fishburn (fishburnf@upmc.edu) 10/03/2018
% Modified by Giulia Rocco (giulia.rocco@i3s.unice.fr) 20/02/2023

function data_dod = hmrR_MotionCorrectTDDR(data_dod, mlActAuto, mlActMan)

% mlAct = SD.MeasListAct; % prune bad channels
t = data_dod.time;
sample_rate = abs(1/(t(1)-t(2)));

if isempty(mlActMan)
mlActMan = cell(length(data_dod),1);
end
if isempty(mlActAuto)
mlActAuto = cell(length(data_dod),1);
end

for kk = 1:length(data_dod)

dod = data_dod(kk).GetDataTimeSeries();
MeasList = data_dod(kk).GetMeasList();

if isempty(mlActMan{kk})
mlActMan{kk} = ones(size(MeasList,1),1);
end
if isempty(mlActAuto{kk})
mlActAuto{kk} = ones(size(MeasList,1),1);
end

MeasListAct = mlActMan{kk} & mlActAuto{kk};

lstAct = find(MeasListAct==1);

for ii=1:length(lstAct)

idx_ch = lstAct(ii);

%% Preprocess: Separate high and low frequencies
filter_cutoff = .5;
filter_order = 3;
Fc = filter_cutoff * 2/sample_rate;
if Fc<1
[fb,fa] = butter(filter_order,Fc);
signal_low = filtfilt(fb,fa,dod(:,idx_ch));
else
signal_low = dod(:,idx_ch);
end
signal_high = dod(:,idx_ch) - signal_low;

%% Initialize
tune = 4.685;
D = sqrt(eps(class(dod)));
mu = inf;
iter = 0;

%% Step 1. Compute temporal derivative of the signal
deriv = diff(signal_low);

%% Step 2. Initialize observation weights
w = ones(size(deriv));

%% Step 3. Iterative estimation of robust weights
while iter < 50

iter = iter + 1;
mu0 = mu;

% Step 3a. Estimate weighted mean
mu = sum( w .* deriv ) / sum( w );

% Step 3b. Calculate absolute residuals of estimate
dev = abs(deriv - mu);

% Step 3c. Robust estimate of standard deviation of the residuals
sigma = 1.4826 * median(dev);

% Step 3d. Scale deviations by standard deviation and tuning parameter
r = dev / (sigma * tune);

% Step 3e. Calculate new weights accoring to Tukey's biweight function
w = ((1 - r.^2) .* (r < 1)) .^ 2;

% Step 3f. Terminate if new estimate is within machine-precision of old estimate
if abs(mu-mu0) < D*max(abs(mu),abs(mu0))
break;
end

end

%% Step 4. Apply robust weights to centered derivative
new_deriv = w .* (deriv-mu);

%% Step 5. Integrate corrected derivative
signal_low_corrected = cumsum([0; new_deriv]);

%% Postprocess: Center the corrected signal
signal_low_corrected = signal_low_corrected - mean(signal_low_corrected);

%% Postprocess: Merge back with uncorrected high frequency component
dod(:,idx_ch) = signal_low_corrected + signal_high;

end

data_dod(kk).SetDataTimeSeries(dod);
end

end

0 comments on commit 77b7953

Please sign in to comment.