Skip to content
This repository has been archived by the owner on Oct 12, 2022. It is now read-only.
/ models Public archive

Polyp Segmentation and Phase Classification from Endoscopic Images

License

Notifications You must be signed in to change notification settings

Basars/models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Models

ML model weights and trainable codes for Basars

Prepare Dependencies

pip install tensorflow requests pandas opencv-python
pip install git+https://github.com/Basars/trans-unet.git
pip install git+https://github.com/Basars/basars-addons.git

Training Your Own Basars

Make sure you've installed Python >= 3.8.

usage: python -m basars.train 
                [-h] --type {stairs,proj}
                [--num-classes NUM_CLASSES] [--epochs EPOCHS] 
                [--batch_size BATCH_SIZE] [--buffer_size BUFFER_SIZE]
                [--multiprocessing-workers MULTIPROCESSING_WORKERS] [--cache-dataset CACHE_DATASET]

Polyp Segmentation and Phase Classification from Endoscopic Images

optional arguments:
  -h, --help            show this help message and exit
  --type {stairs,proj}  The type of transformer model. Default value is 'stairs'
  --num-classes NUM_CLASSES
                        Number of classes to be classified. Default value is 5
  --epochs EPOCHS       Epochs that how many times the model would be trained. Default value is 1290
  --batch_size BATCH_SIZE
                        The batch size. Default value is 64
  --buffer_size BUFFER_SIZE
                        The buffer size for shuffling datasets. Default value is 1024
  --multiprocessing-workers MULTIPROCESSING_WORKERS
                        Number of workers for prefetching datasets. Default value is 64
  --cache-dataset CACHE_DATASET
                        True to cache datasets on memory otherwise don't. Default value is True

Training Sample

python -m basars.train --type proj --epochs 1290

Configuration Guide

Refer the repository: final-experiments

Weights

You can find out the weights in Releases.

Naming Convention and Meaning

stairs model have conv3x3 (256, 128, 64, 32, 16) → conv1x1 (5) upsamples

proj model have conv3x3 (256, 128, 64, 16) → conv1x1 (5, 5) upsamples

Model Definition

stairs model:

model = Sequential(name='ViT-stairs', layers=[
    VisionTransformer(input_shape=(224, 224, 3),
                      upsample_channels=(256, 128, 64, 32),
                      output_kernel_size=3, num_classes=16),
    Conv2D(5, kernel_size=(1, 1), padding='same', activation='softmax', use_bias=False)
])
model.load_weights('basars-cls5-stairs.h5')

proj model:

Sequential(name='ViT-proj', layers=[
    VisionTransformer(input_shape=(224, 224, 3), num_classes=5),
    Conv2D(5, kernel_size=(1, 1), padding='same', activation='softmax', use_bias=False)
])
model.load_weights('basars-cls5-proj.h5')

Model Architecture

architecture

Samples

sample0 sample1 sample2 sample3

About

Polyp Segmentation and Phase Classification from Endoscopic Images

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages