The aim of this project is to build a machine leraning classifier web app which can help us detect a potential machines infected by the DGA (Domain Generation Algorithm) malware.
Typically machines that are infected tend to generate a bunch of random domain names which will contain one active C&C server.
This application guides users on
detecting potential DGA (Domain Generation Algorithm) generated malware domains
to avoid maleware attack also other numerous purposes including educational purposes.
* Python
* flask
* Numpy
* Matplotlib
* Seaborn
* Pandas
* Scikit-learn
* nltk
* Joblib
* Docker
* AWS
This app was containerized with the docker contrainer and the app image was pushed to docker hub and deployed on AWS
Link to Domain Checker web app : Domain checker app
Link to Domain Checker docker image : Domain checker app image
DOMAIN CHECKER
.
├── app.py
├── config.py
├── dataset
│ └── dga_data.csv
├── model_build_binary_class.ipynb
├── models
│ ├── trained_rf_dga_classifier.sav
│ └── Xtrain.pkl
├── __pycache__
│ ├── config.cpython-310.pyc
│ └── utils.cpython-310.pyc
├── README.md
├── static
│ ├── css
│ │ └── main.css
│ └── hero_img.svg
├── sub_class_model.ipynb
├── templates
│ ├── index.html
│ └── predict.html
└── utils.py