Skip to content

Commit

Permalink
[xdoctest] reformat example code with google style in No. 301 (Paddle…
Browse files Browse the repository at this point in the history
…Paddle#56599)

* Update private_helper_function.py

* xdoc

* Apply suggestions from code review

* format and skip a to_static case

* add a missing space

---------

Co-authored-by: SigureMo <sigure.qaq@gmail.com>
  • Loading branch information
2 people authored and BeingGod committed Sep 9, 2023
1 parent f6cb9f8 commit 45572b3
Showing 1 changed file with 177 additions and 165 deletions.
342 changes: 177 additions & 165 deletions python/paddle/incubate/optimizer/modelaverage.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,96 +69,100 @@ class ModelAverage(Optimizer):
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
class LinearNet(nn.Layer):
def __init__(self):
super().__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
self.bias = self._linear.bias
@paddle.jit.to_static
def forward(self, x):
return self._linear(x)
def train(layer, loader, loss_fn, opt, model_average):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
model_average.step()
opt.clear_grad()
model_average.clear_grad()
print("Train Epoch {} batch {}: loss = {}, bias = {}".format(
epoch_id, batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
def evaluate(layer, loader, loss_fn):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
print("Evaluate batch {}: loss = {}, bias = {}".format(
batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
optimizer = opt.Momentum(learning_rate=0.2, momentum=0.1, parameters=layer.parameters())
model_average = paddle.incubate.ModelAverage(0.15,
parameters=layer.parameters(),
min_average_window=2,
max_average_window=10)
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
# create data loader
eval_loader = paddle.io.DataLoader(dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=1)
# train
train(layer, loader, loss_fn, optimizer, model_average)
print("\nEvaluate With ModelAverage")
with model_average.apply(need_restore=False):
evaluate(layer, eval_loader, loss_fn)
print("\nEvaluate With Restored Paramters")
model_average.restore()
evaluate(layer, eval_loader, loss_fn)
.. code-block:: python
>>> # doctest: +SKIP("Cannot get source code by to_static in REPL")
>>> import numpy as np
>>> import paddle
>>> import paddle.nn as nn
>>> import paddle.optimizer as opt
>>> BATCH_SIZE = 16
>>> BATCH_NUM = 4
>>> EPOCH_NUM = 4
>>> IMAGE_SIZE = 784
>>> CLASS_NUM = 10
>>> # define a random dataset
>>> class RandomDataset(paddle.io.Dataset):
... def __init__(self, num_samples):
... self.num_samples = num_samples
... def __getitem__(self, idx):
... image = np.random.random([IMAGE_SIZE]).astype('float32')
... label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
... return image, label
... def __len__(self):
... return self.num_samples
...
>>> class LinearNet(nn.Layer):
... def __init__(self):
... super().__init__()
... self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
... self.bias = self._linear.bias
...
... @paddle.jit.to_static
... def forward(self, x):
... return self._linear(x)
...
>>> def train(layer, loader, loss_fn, opt, model_average):
... for epoch_id in range(EPOCH_NUM):
... for batch_id, (image, label) in enumerate(loader()):
... out = layer(image)
... loss = loss_fn(out, label)
... loss.backward()
... opt.step()
... model_average.step()
... opt.clear_grad()
... model_average.clear_grad()
... print("Train Epoch {} batch {}: loss = {}, bias = {}".format(
... epoch_id, batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
...
>>> def evaluate(layer, loader, loss_fn):
... for batch_id, (image, label) in enumerate(loader()):
... out = layer(image)
... loss = loss_fn(out, label)
... loss.backward()
... print("Evaluate batch {}: loss = {}, bias = {}".format(
... batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
...
>>> # create network
>>> layer = LinearNet()
>>> loss_fn = nn.CrossEntropyLoss()
>>> optimizer = opt.Momentum(learning_rate=0.2, momentum=0.1, parameters=layer.parameters())
>>> model_average = paddle.incubate.ModelAverage(
... 0.15,
... parameters=layer.parameters(),
... min_average_window=2,
... max_average_window=10
... )
...
>>> # create data loader
>>> dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
>>> loader = paddle.io.DataLoader(dataset,
... batch_size=BATCH_SIZE,
... shuffle=True,
... drop_last=True,
... num_workers=2)
...
>>> # create data loader
>>> eval_loader = paddle.io.DataLoader(dataset,
... batch_size=BATCH_SIZE,
... shuffle=True,
... drop_last=True,
... num_workers=1
... )
...
>>> # train
>>> train(layer, loader, loss_fn, optimizer, model_average)
>>> print("\nEvaluate With ModelAverage")
>>> with model_average.apply(need_restore=False):
... evaluate(layer, eval_loader, loss_fn)
>>> print("\nEvaluate With Restored Paramters")
>>> model_average.restore()
>>> evaluate(layer, eval_loader, loss_fn)
"""

Expand Down Expand Up @@ -317,23 +321,25 @@ def minimize(
.. code-block:: python
import paddle
inp = paddle.rand([1, 10], dtype="float32")
linear = paddle.nn.Linear(10, 1)
out = linear(inp)
loss = paddle.mean(out)
loss.backward()
sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
sgd.minimize(loss)
modelaverage = paddle.incubate.ModelAverage(0.15,
parameters=linear.parameters(),
min_average_window=2,
max_average_window=4)
modelaverage.minimize(loss)
sgd.clear_grad()
modelaverage.clear_grad()
>>> import paddle
>>> inp = paddle.rand([1, 10], dtype="float32")
>>> linear = paddle.nn.Linear(10, 1)
>>> out = linear(inp)
>>> loss = paddle.mean(out)
>>> loss.backward()
>>> sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
>>> sgd.minimize(loss)
>>> modelaverage = paddle.incubate.ModelAverage(
... 0.15,
... parameters=linear.parameters(),
... min_average_window=2,
... max_average_window=4
... )
>>> modelaverage.minimize(loss)
>>> sgd.clear_grad()
>>> modelaverage.clear_grad()
"""
if in_dynamic_mode():
Expand All @@ -352,21 +358,23 @@ def step(self):
.. code-block:: python
import paddle
inp = paddle.rand([1, 10], dtype="float32")
linear = paddle.nn.Linear(10, 1)
out = linear(inp)
loss = paddle.mean(out)
sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
modelaverage = paddle.incubate.ModelAverage(0.15,
parameters=linear.parameters(),
min_average_window=2,
max_average_window=4)
loss.backward()
sgd.step()
modelaverage.step()
sgd.clear_grad()
modelaverage.clear_grad()
>>> import paddle
>>> inp = paddle.rand([1, 10], dtype="float32")
>>> linear = paddle.nn.Linear(10, 1)
>>> out = linear(inp)
>>> loss = paddle.mean(out)
>>> sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
>>> modelaverage = paddle.incubate.ModelAverage(
... 0.15,
... parameters=linear.parameters(),
... min_average_window=2,
... max_average_window=4
... )
>>> loss.backward()
>>> sgd.step()
>>> modelaverage.step()
>>> sgd.clear_grad()
>>> modelaverage.clear_grad()
"""

params_grads = []
Expand Down Expand Up @@ -398,28 +406,30 @@ def apply(self, executor=None, need_restore=True):
.. code-block:: python
import paddle
inp = paddle.rand([1, 10], dtype="float32")
linear = paddle.nn.Linear(10, 1)
out = linear(inp)
loss = paddle.mean(out)
loss.backward()
sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
modelaverage = paddle.incubate.ModelAverage(0.15,
parameters=linear.parameters(),
min_average_window=2,
max_average_window=4)
sgd.step()
modelaverage.step()
with modelaverage.apply():
for param in linear.parameters():
print(param)
for param in linear.parameters():
print(param)
>>> import paddle
>>> inp = paddle.rand([1, 10], dtype="float32")
>>> linear = paddle.nn.Linear(10, 1)
>>> out = linear(inp)
>>> loss = paddle.mean(out)
>>> loss.backward()
>>> sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
>>> modelaverage = paddle.incubate.ModelAverage(
... 0.15,
... parameters=linear.parameters(),
... min_average_window=2,
... max_average_window=4
... )
>>> sgd.step()
>>> modelaverage.step()
>>> with modelaverage.apply():
... for param in linear.parameters():
... print(param)
>>> for param in linear.parameters():
... print(param)
"""
if in_dynamic_mode():
for param in self._parameter_list:
Expand Down Expand Up @@ -472,33 +482,35 @@ def restore(self, executor=None):
.. code-block:: python
import paddle
inp = paddle.rand([1, 10], dtype="float32")
linear = paddle.nn.Linear(10, 1)
out = linear(inp)
loss = paddle.mean(out)
loss.backward()
>>> import paddle
>>> inp = paddle.rand([1, 10], dtype="float32")
>>> linear = paddle.nn.Linear(10, 1)
>>> out = linear(inp)
>>> loss = paddle.mean(out)
>>> loss.backward()
sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
>>> sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters())
modelaverage = paddle.incubate.ModelAverage(0.15,
parameters=linear.parameters(),
min_average_window=2,
max_average_window=4)
sgd.step()
modelaverage.step()
>>> modelaverage = paddle.incubate.ModelAverage(
... 0.15,
... parameters=linear.parameters(),
... min_average_window=2,
... max_average_window=4
... )
>>> sgd.step()
>>> modelaverage.step()
with modelaverage.apply(need_restore=False):
for param in linear.parameters():
print(param)
>>> with modelaverage.apply(need_restore=False):
... for param in linear.parameters():
... print(param)
for param in linear.parameters():
print(param)
>>> for param in linear.parameters():
... print(param)
modelaverage.restore()
>>> modelaverage.restore()
for param in linear.parameters():
print(param)
>>> for param in linear.parameters():
... print(param)
"""
if in_dynamic_mode():
for param in self._parameter_list:
Expand Down

0 comments on commit 45572b3

Please sign in to comment.