Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[core] Fix spatial derivatives when using mode='bspline' or mode='gaussian' #135

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 31 additions & 14 deletions src/deepali/core/image.py
Original file line number Diff line number Diff line change
Expand Up @@ -1486,7 +1486,10 @@ def spatial_derivatives(
If ``None``, ``forward_central_backward`` is used as default mode.
sigma: Standard deviation of Gaussian kernel in grid units. If ``None`` or zero,
no Gaussian smoothing is used for calculation of finite differences, and a
default standard deviation of 0.4 is used when ``mode="gaussian"``.
default standard deviation of 0.7355 is used when ``mode="gaussian"``. With a smaller
standard deviation, the magnitude of the derivative values starts to deviate between
``mode="gaussian"`` and finite differences of a Gaussian smoothed input. This is likely
due to a too small discretized Gaussian filter and its derivative.
spacing: Physical spacing between image grid points, e.g., ``(sx, sy, sz)``.
When a scalar is given, the same spacing is used for each image and spatial dimension.
If a sequence is given, it must be of length equal to the number of spatial dimensions ``D``,
Expand Down Expand Up @@ -1556,7 +1559,7 @@ def spatial_derivatives(
if mode in ("forward", "backward", "central", "forward_central_backward", "prewitt", "sobel"):
if sigma and sigma > 0:
blur = gaussian1d(sigma, dtype=torch.float, device=data.device)
data = conv(data, blur, padding=PaddingMode.ZEROS)
data = conv(data, blur, padding=PaddingMode.REPLICATE)
if mode in ("prewitt", "sobel"):
avg_kernel = torch.tensor([1, 1 if mode == "prewitt" else 2, 1], dtype=data.dtype)
avg_kernel /= avg_kernel.sum()
Expand Down Expand Up @@ -1589,7 +1592,7 @@ def spatial_derivatives(

if sigma and sigma > 0:
blur = gaussian1d(sigma, dtype=torch.float, device=data.device)
data = conv(data, blur, padding=PaddingMode.ZEROS)
data = conv(data, blur, padding=PaddingMode.REPLICATE)

if stride is None:
stride = 1
Expand All @@ -1616,27 +1619,41 @@ def bspline1d(s: int, d: int) -> Tensor:
for spatial_dim in SpatialDerivativeKeys.split(code):
order[spatial_dim] += 1
kernel = [bspline1d(s, d) for s, d in zip(stride, order)]
derivs[code] = evaluate_cubic_bspline(data, kernel=kernel)
deriv = evaluate_cubic_bspline(data, kernel=kernel)
if sum(order) > 0:
denom = torch.ones(N, dtype=spacing.dtype, device=spacing.device)
for delta, d in zip(spacing.transpose(0, 1), order):
if d > 0:
denom.mul_(delta.pow(d))
denom = denom.reshape((N,) + (1,) * (deriv.ndim - 1))
deriv = deriv.div_(denom.to(deriv))
derivs[code] = deriv

elif mode == "gaussian":

def pad_spatial_dim(data: Tensor, sdim: int, padding: int) -> Tensor:
pad = [(padding, padding) if d == sdim else (0, 0) for d in range(data.ndim - 2)]
pad = [n for v in pad for n in v]
return F.pad(data, pad, mode="replicate")

if not sigma:
sigma = 0.4
kernel_0 = gaussian1d(sigma, normalize=False, dtype=torch.float)
kernel_1 = gaussian1d_I(sigma, normalize=False, dtype=torch.float)
norm = kernel_0.sum()
kernel_0 = kernel_0.div_(norm).to(data.device)
kernel_1 = kernel_1.div_(norm).to(data.device)
sigma = 0.7355 # same default value as used in downsample()
kernel_0 = gaussian1d(sigma, normalize=False, dtype=torch.float, device=data.device)
kernel_1 = gaussian1d_I(sigma, normalize=False, dtype=torch.float, device=data.device)
for i in range(max_order):
for code in unique_keys:
key = code[: i + 1]
if i < len(code) and key not in derivs:
sdim = SpatialDim.from_arg(code[i])
result = data if i == 0 else derivs[code[:i]]
deriv = data if i == 0 else derivs[code[:i]]
for d in range(D):
dim = SpatialDim(d).tensor_dim(result.ndim)
dim = SpatialDim(d).tensor_dim(deriv.ndim)
kernel = kernel_1 if sdim == d else kernel_0
result = conv1d(result, kernel, dim=dim, padding=len(kernel) // 2)
derivs[key] = result
deriv = pad_spatial_dim(deriv, d, len(kernel) // 2)
deriv = conv1d(deriv, kernel, dim=dim, padding=0)
denom = spacing.narrow(1, sdim, 1).reshape((N,) + (1,) * (deriv.ndim - 1))
deriv = deriv.div_(denom.to(deriv))
derivs[key] = deriv
derivs = {key: derivs[SpatialDerivativeKeys.sorted(key)] for key in which}

else:
Expand Down
205 changes: 205 additions & 0 deletions tests/_test_core_flow_deriv.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,205 @@
r"""Interactive test and visualization of vector flow derivatives."""

# %%
# Imports
from typing import Dict, Optional, Sequence

import matplotlib.pyplot as plt

import torch
from torch import Tensor
from torch.random import Generator

from deepali.core import Axes, Grid
import deepali.core.bspline as B
import deepali.core.functional as U


# %%
# Auxiliary functions
def change_axes(flow: Tensor, grid: Grid, axes: Axes, to_axes: Axes) -> Tensor:
if axes != to_axes:
flow = U.move_dim(flow, 1, -1)
flow = grid.transform_vectors(flow, axes=axes, to_axes=to_axes)
flow = U.move_dim(flow, -1, 1)
return flow


def flow_derivatives(
flow: Tensor, grid: Grid, axes: Axes, to_axes: Optional[Axes] = None, **kwargs
) -> Dict[str, Tensor]:
if to_axes is None:
to_axes = axes
flow = change_axes(flow, grid, axes, to_axes)
axes = to_axes
if "spacing" not in kwargs:
if axes == Axes.CUBE:
spacing = tuple(2 / n for n in grid.size())
elif axes == Axes.CUBE_CORNERS:
spacing = tuple(2 / (n - 1) for n in grid.size())
elif axes == Axes.GRID:
spacing = 1
elif axes == Axes.WORLD:
spacing = grid.spacing()
else:
spacing = None
kwargs["spacing"] = spacing
return U.flow_derivatives(flow, **kwargs)


def random_svf(
size: Sequence[int],
stride: int = 1,
generator: Optional[Generator] = None,
) -> Tensor:
cp_grid_size = B.cubic_bspline_control_point_grid_size(size, stride=stride)
cp_grid_size = tuple(reversed(cp_grid_size))
data = torch.randn((1, 3) + cp_grid_size, generator=generator)
data = U.fill_border(data, margin=3, value=0, inplace=True)
return B.evaluate_cubic_bspline(data, size=size, stride=stride)


def visualize_flow(
ax: plt.Axes,
flow: Tensor,
grid: Optional[Grid] = None,
axes: Optional[Axes] = None,
label: Optional[str] = None,
) -> None:
if grid is None:
grid = Grid(shape=flow.shape[2:])
if axes is None:
axes = grid.axes()
flow = change_axes(flow, grid, axes, grid.axes())
x = grid.coords(channels_last=False, dtype=flow.dtype, device=flow.device)
x = U.move_dim(x.unsqueeze_(0).add_(flow), 1, -1)
target_grid = U.grid_image(shape=flow.shape[2:], inverted=True, stride=(5, 5))
warped_grid = U.warp_image(target_grid, x, align_corners=grid.align_corners())
ax.imshow(warped_grid[0, 0, flow.shape[2] // 2], cmap="gray")
if label:
ax.set_title(label, fontsize=24)


# %%
# Random velocity fields
generator = torch.Generator().manual_seed(42)
grid = Grid(size=(128, 128, 64), spacing=(0.5, 0.5, 1.0))
flow = random_svf(grid.size(), stride=8, generator=generator).mul_(0.1)

fig, axes = plt.subplots(1, 1, figsize=(4, 4))

ax = axes
ax.set_title("v", fontsize=24, pad=20)
visualize_flow(ax, flow, grid=grid, axes=grid.axes())


# %%
# Visualise first order derivatives for different modes
configs = [
dict(mode="forward_central_backward"),
dict(mode="bspline"),
dict(mode="gaussian", sigma=0.7355),
]

fig, axes = plt.subplots(len(configs), 4, figsize=(16, 4 * len(configs)))

for i, config in enumerate(configs):
derivs = flow_derivatives(
flow,
grid=grid,
axes=grid.axes(),
to_axes=Axes.GRID,
which=["du/dx", "du/dy", "dv/dx", "dv/dy"],
**config,
)
for ax, (key, deriv) in zip(axes[i], derivs.items()):
if i == 0:
ax.set_title(key, fontsize=24, pad=20)
ax.imshow(deriv[0, 0, deriv.shape[2] // 2], vmin=-1, vmax=1)


# %%
# Compare magnitudes of first order derivatives for different modes
flow_axes = [Axes.GRID, Axes.WORLD, Axes.CUBE_CORNERS]

sigma = 0.7355

configs = [
dict(mode="bspline"),
dict(mode="gaussian", sigma=sigma),
dict(mode="forward_central_backward", sigma=sigma),
dict(mode="forward_central_backward"),
]

for to_axes in flow_axes:
for config in configs:
print(f"axes={to_axes}, " + ", ".join(f"{k}={v!r}" for k, v in config.items()))
derivs = flow_derivatives(
flow,
grid=grid,
axes=grid.axes(),
to_axes=to_axes,
which=["du/dx", "du/dy", "dv/dx", "dv/dy"],
**config,
)
for key, deriv in derivs.items():
print(f"- max(abs({key})): {deriv.abs().max().item():.5f}")
print()
print("\n")


# %%
# Visualise second order derivatives for different modes
configs = [
dict(mode="forward_central_backward"),
dict(mode="bspline"),
dict(mode="gaussian", sigma=0.7355),
]

fig, axes = plt.subplots(len(configs), 4, figsize=(16, 4 * len(configs)))

for i, config in enumerate(configs):
derivs = flow_derivatives(
flow,
grid=grid,
axes=grid.axes(),
to_axes=Axes.GRID,
which=["du/dxx", "du/dxy", "dv/dxy", "dv/dyy"],
**config,
)
for ax, (key, deriv) in zip(axes[i], derivs.items()):
if i == 0:
ax.set_title(key, fontsize=24, pad=20)
ax.imshow(deriv[0, 0, deriv.shape[2] // 2], vmin=-0.4, vmax=0.4)


# %%
# Compare magnitudes of second order derivatives for different modes
flow_axes = [Axes.GRID, Axes.WORLD, Axes.CUBE_CORNERS]

sigma = 0.7355

configs = [
dict(mode="bspline"),
dict(mode="gaussian", sigma=sigma),
dict(mode="forward_central_backward", sigma=sigma),
dict(mode="forward_central_backward"),
]

for to_axes in flow_axes:
for config in configs:
print(f"axes={to_axes}, " + ", ".join(f"{k}={v!r}" for k, v in config.items()))
derivs = flow_derivatives(
flow,
grid=grid,
axes=grid.axes(),
to_axes=to_axes,
which=["du/dxx", "du/dxy", "dv/dxy", "dv/dyy"],
**config,
)
for key, deriv in derivs.items():
print(f"- max(abs({key})): {deriv.abs().max().item():.5f}")
print()
print("\n")

# %%