Skip to content

BlackNoodle/TUCORE-GCN

Repository files navigation

Graph Based Network with Contextualized Representations of Turns in Dialogue (EMNLP 2021)

Official PyTorch implementation of our EMNLP paper: Graph Based Network with Contextualized Representations of Turns in Dialogue

Architecture

Environments

  • python (3.8.3)
  • cuda (11.0)
  • Ubuntu-18.04.5

Requirements

  • dgl-cu110 (0.5.3)
  • torch (1.7.0)
  • numpy (1.19.2)
  • sklearn
  • regex
  • packaging
  • tqdm

PS: If you use Docker, you can download Docker images that we used in our experiment here.

Usage

  • run_classifier.py : Code to train and evaluate the model
  • data.py : Code to define Datasets / Dataloader for TUCORE-GCN
  • evaluate.py : Code to evaluate the model on DialogRE
  • models/BERT : The directory containing the TUCORE-GCN for BERT version
  • models/RoBERTa : The directory containing the TUCORE-GCN for RoBERTa version
  • datasets/MELD/MELD4TUCOREGCN.py : Code to convert the MELD to DialogRE style as suggested in the paper
  • datasets/EmoryNLP/EMORY4TUCOREGCN.py : Code to convert the EmoryNLP to DialogRE style as suggested in the paper
  • datasets/DailyDialog/DailyDialog4TUCOREGCN.py : Code to convert the DailyDialog to DialogRE style as suggested in the paper

Preparation

Dataset

DialogRE

  • Download data from here
  • Put train.json, dev.json, test.json from data_v2/en/data/ into the directory datasets/DialogRE/

MELD

  • Download data from here
  • Put train_sent_emo.csv, dev_sent_emo.csv.json, test_sent_emo.csv.json from data/MELD/ into the directory datasets/MELD/
  • In MELD, execute python MELD4TUCOREGCN.py

EmoryNLP

  • Download data from here
  • Put emotion-detection-trn.json, emotion-detection-dev.json, emotion-detection-tst.json from json/ into the directory datasets/EmoryNLP/
  • In EmoryNLP, execute python EMORY4TUCOREGCN.py

DailyDialog

  • Download and unzip data from here
  • Put and unziptrain.zip, validation.zip, test.zip from ijcnlp_dailydialog/ into the directory datasets/DailyDialog/
  • In DailyDialog, execute python DailyDialog4TUCOREGCN.py

Pre-trained Language Models

BERT Base

  • Download and unzip BERT-Base Uncased from here, and copy the files into the directory pre-trained_model/BERT/
  • Set up the environment variable for BERT by export BERT_BASE_DIR=/PATH/TO/BERT/DIR.
  • In pre-trained_model, execute python convert_tf_checkpoint_to_pytorch_BERT.py --tf_checkpoint_path=$BERT_BASE_DIR/bert_model.ckpt --bert_config_file=$BERT_BASE_DIR/bert_config.json --pytorch_dump_path=$BERT_BASE_DIR/pytorch_model.bin.

RoBERTa Large

  • Download and unzip RoBERTa-large from here, and copy the files into the directory pre-trained_model/RoBERTa/
  • Download merges.txt and vocab.json from here and put them into the directory pre-trained_model/RoBERTa/
  • Set up the environment variable for RoBERTa by export RoBERTa_LARGE_DIR=/PATH/TO/RoBERTa/DIR.
  • In pre-trained_model, execute python convert_roberta_original_pytorch_checkpoint_to_pytorch.py --roberta_checkpoint_path=$RoBERTa_LARGE_DIR --pytorch_dump_folder_path=$RoBERTa_LARGE_DIR.

Training & Evaluation

BERT + DialogRE

  • Execute the following commands in TUCORE-GCN:
python run_classifier.py --do_train --do_eval --encoder_type BERT  --data_dir datasets/DialogRE --data_name DialogRE   --vocab_file $BERT_BASE_DIR/vocab.txt   --config_file $BERT_BASE_DIR/bert_config.json   --init_checkpoint $BERT_BASE_DIR/pytorch_model.bin   --max_seq_length 512   --train_batch_size 12   --learning_rate 3e-5   --num_train_epochs 20.0   --output_dir TUCOREGCN_BERT_DialogRE  --gradient_accumulation_steps 2

rm TUCOREGCN_BERT_DialogRE/model_best.pt

python evaluate.py --dev datasets/DialogRE/dev.json --test datasets/DialogRE/test.json --f1dev TUCOREGCN_BERT_DialogRE/logits_dev.txt --f1test TUCOREGCN_BERT_DialogRE/logits_test.txt --f1cdev TUCOREGCN_BERT_DialogRE/logits_devc.txt --f1ctest TUCOREGCN_BERT_DialogRE/logits_testc.txt --result_path TUCOREGCN_BERT_DialogRE/result.txt

BERT + MELD

  • Execute the following commands in TUCORE-GCN:
python run_classifier.py --do_train --do_eval --encoder_type BERT  --data_dir datasets/MELD --data_name MELD   --vocab_file $BERT_BASE_DIR/vocab.txt   --config_file $BERT_BASE_DIR/bert_config.json   --init_checkpoint $BERT_BASE_DIR/pytorch_model.bin   --max_seq_length 512   --train_batch_size 12   --learning_rate 3e-5   --num_train_epochs 10.0   --output_dir TUCOREGCN_BERT_MELD  --gradient_accumulation_steps 2

rm TUCOREGCN_BERT_MELD/model_best.pt

BERT + EmoryNLP

  • Execute the following commands in TUCORE-GCN:
python run_classifier.py --do_train --do_eval  --encoder_type BERT --data_dir datasets/EmoryNLP --data_name EmoryNLP   --vocab_file $BERT_BASE_DIR/vocab.txt   --config_file $BERT_BASE_DIR/bert_config.json   --init_checkpoint $BERT_BASE_DIR/pytorch_model.bin   --max_seq_length 512   --train_batch_size 12   --learning_rate 3e-5   --num_train_epochs 10.0   --output_dir TUCOREGCN_BERT_EmoryNLP  --gradient_accumulation_steps 2

rm TUCOREGCN_BERT_EmoryNLP/model_best.pt

BERT + DailyDialog

  • Execute the following commands in TUCORE-GCN:
python run_classifier.py --do_train --do_eval  --encoder_type BERT --data_dir datasets/DailyDialog --data_name DailyDialog   --vocab_file $BERT_BASE_DIR/vocab.txt   --config_file $BERT_BASE_DIR/bert_config.json   --init_checkpoint $BERT_BASE_DIR/pytorch_model.bin   --max_seq_length 512   --train_batch_size 12   --learning_rate 3e-5   --num_train_epochs 10.0   --output_dir TUCOREGCN_BERT_DailyDialog  --gradient_accumulation_steps 2

rm TUCOREGCN_BERT_DailyDialog/model_best.pt

RoBERTa + DialogRE

  • Execute the following commands in TUCORE-GCN:
python run_classifier.py --do_train --do_eval --encoder_type RoBERTa  --data_dir datasets/DialogRE --data_name DialogRE   --vocab_file $RoBERTa_LARGE_DIR/vocab.json --merges_file $RoBERTa_LARGE_DIR/merges.txt  --config_file $RoBERTa_LARGE_DIR/config.json   --init_checkpoint $RoBERTa_LARGE_DIR/pytorch_model.bin   --max_seq_length 512   --train_batch_size 12   --learning_rate 5e-6   --num_train_epochs 30.0   --output_dir TUCOREGCN_RoBERTa_DialogRE  --gradient_accumulation_steps 2

rm TUCOREGCN_RoBERTa_DialogRE/model_best.pt

python evaluate.py --dev datasets/DialogRE/dev.json --test datasets/DialogRE/test.json --f1dev TUCOREGCN_RoBERTa_DialogRE/logits_dev.txt --f1test TUCOREGCN_RoBERTa_DialogRE/logits_test.txt --f1cdev TUCOREGCN_RoBERTa_DialogRE/logits_devc.txt --f1ctest TUCOREGCN_RoBERTa_DialogRE/logits_testc.txt --result_path TUCOREGCN_RoBERTa_DialogRE/result.txt

RoBERTa + MELD

  • Execute the following commands in TUCORE-GCN:
python run_classifier.py --do_train --do_eval --encoder_type RoBERTa  --data_dir datasets/MELD --data_name MELD   --vocab_file $RoBERTa_LARGE_DIR/vocab.json --merges_file $RoBERTa_LARGE_DIR/merges.txt   --config_file $RoBERTa_LARGE_DIR/config.json   --init_checkpoint $RoBERTa_LARGE_DIR/pytorch_model.bin   --max_seq_length 512   --train_batch_size 12   --learning_rate 5e-6   --num_train_epochs 10.0   --output_dir TUCOREGCN_RoBERTa_MELD  --gradient_accumulation_steps 2

rm TUCOREGCN_RoBERTa_MELD/model_best.pt

RoBERTa + EmoryNLP

  • Execute the following commands in TUCORE-GCN:
python run_classifier.py --do_train --do_eval --encoder_type RoBERTa  --data_dir datasets/EmoryNLP --data_name EmoryNLP   --vocab_file $RoBERTa_LARGE_DIR/vocab.json --merges_file $RoBERTa_LARGE_DIR/merges.txt   --config_file $RoBERTa_LARGE_DIR/config.json   --init_checkpoint $RoBERTa_LARGE_DIR/pytorch_model.bin   --max_seq_length 512   --train_batch_size 12   --learning_rate 5e-6   --num_train_epochs 10.0   --output_dir TUCOREGCN_RoBERTa_EmoryNLP  --gradient_accumulation_steps 2

rm TUCOREGCN_RoBERTa_EmoryNLP/model_best.pt

RoBERTa + DailyDialog

  • Execute the following commands in TUCORE-GCN:
python run_classifier.py --do_train --do_eval  --encoder_type RoBERTa --data_dir datasets/DailyDialog --data_name DailyDialog   --vocab_file $RoBERTa_LARGE_DIR/vocab.json --merges_file $RoBERTa_LARGE_DIR/merges.txt   --config_file $RoBERTa_LARGE_DIR/config.json   --init_checkpoint $RoBERTa_LARGE_DIR/pytorch_model.bin   --max_seq_length 512   --train_batch_size 12   --learning_rate 5e-6   --num_train_epochs 10.0   --output_dir TUCOREGCN_RoBERTa_DailyDialog  --gradient_accumulation_steps 2

rm TUCOREGCN_RoBERTa_DailyDialog/model_best.pt

Citation

@inproceedings{lee-choi-2021-graph,
    title = "Graph Based Network with Contextualized Representations of Turns in Dialogue",
    author = "Lee, Bongseok  and
      Choi, Yong Suk",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.36",
    pages = "443--455",
    abstract = "Dialogue-based relation extraction (RE) aims to extract relation(s) between two arguments that appear in a dialogue. Because dialogues have the characteristics of high personal pronoun occurrences and low information density, and since most relational facts in dialogues are not supported by any single sentence, dialogue-based relation extraction requires a comprehensive understanding of dialogue. In this paper, we propose the TUrn COntext awaRE Graph Convolutional Network (TUCORE-GCN) modeled by paying attention to the way people understand dialogues. In addition, we propose a novel approach which treats the task of emotion recognition in conversations (ERC) as a dialogue-based RE. Experiments on a dialogue-based RE dataset and three ERC datasets demonstrate that our model is very effective in various dialogue-based natural language understanding tasks. In these experiments, TUCORE-GCN outperforms the state-of-the-art models on most of the benchmark datasets. Our code is available at https://github.com/BlackNoodle/TUCORE-GCN.",
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages