Skip to content

BloodAxe/Kaggle-2019-Blindness-Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Kaggle-2019-Blindness-Detection

10th-place solution code for https://www.kaggle.com/c/aptos2019-blindness-detection/overview. This repository contains my solution code and provided as is.

This repository is not maintained

Dependencies

pip install --quiet -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" git+https://github.com/NVIDIA/apex
pip install git+https://github.com/mapillary/inplace_abn.git@v1.0.3

Results

Experiment name CV score LB score Encoder Extra data Note Args
Baseline classification 0.9077 ± 0.0045 0.625 Resnet18 No 4 folds -
Baseline regression 0.9093 ± 0.0033 0.646 Resnet18 No 4 folds -
-------------------------- ----------------- ------------ ----------------------- ---------------- --------- -
Baseline classification 0.9213 ± 0.0033 0.772 SEResnext50 No 4 folds -
Baseline regression 0.9225 ± 0.0022 0.787 SEResnext50 No 2 folds -
Baseline regression 0.9176 ± 0.0080 0.763 SEResnext101 No 4 folds, Multi-pooling -
Baseline classification 0.8055 ± 0.0065 0.714 (?1) cls_resnext50_gap Yes 4 folds -
Baseline regression 0.9234 ± 0.0035 0.791 reg_resnext50_rms No 4 folds -
Baseline regression 0.9129 ± 0.0099 0.804 reg_resnext50_rms Yes 4 folds -
Baseline regression 0.9200 ± 0.0044 0.803 reg_resnext50_rms Yes 4 folds (768) -
-------------------------- ----------------- ------------ ----------------------- ---------------- --------- -
Baseline regression 0.9128 ± 0.0066 0.799 reg_seresnext50_rms Yes 4 folds -
Baseline regression 0.8992 ± 0.0041 reg_seresnext101_rms Yes 4 folds -
Baseline regression 0.9018 ± 0.0079 0.774 reg_densenet201_rms Yes 4 folds -
Baseline regression 0.9053 ± 0.0053 0.761 reg_inceptionv4_rms Yes 4 folds -
-------------------------- ----------------- ------------ ----------------------- ---------------- --------- -
Regression with aux loss 0.9170 ± 0.0049 0.787 reg_seresnext50_rms Yes 4 folds -m reg_seresnext50_rms -a medium -f 0 -f 1 -f 2 -f 3 -b 60 -l clipped_mse --fp16 -o Adam -d 0.5 -s multistep -lr 1e-4 -wd 1e-4 -e 100 -v --use-idrid --use-messidor --use-aptos2019 --warmup 10
-------------------------- ----------------- ------------ ----------------------- ---------------- --------- -
Regression with aux loss 0.9244 ± 0.0060 0.752 reg_seresnext50_rms Aptos2015 4 folds train_regression_baseline.py -m reg_seresnext50_rms -a medium -f 0 -f 1 -f 2 -f 3 -b 60 --fp16 -o Adam -d 0.5 -s multistep -lr 1e-4 -e 100 -es 20 -v --use-aptos2019 --warmup 10
Regression with aux loss 0.8737 ± 0.0214 0.668 reg_seresnext50_rms IDRID 4 folds train_regression_baseline.py -m reg_seresnext50_rms -a medium -f 0 -f 1 -f 2 -f 3 -b 60 --fp16 -o Adam -d 0.5 -s multistep -lr 1e-4 -e 100 -es 20 -v --use-idrid --warmup 10
Regression with aux loss 0.9006 ± 0.0141 0.554 reg_seresnext50_rms Messidor 4 folds train_regression_baseline.py -m reg_seresnext50_rms -a medium -f 0 -f 1 -f 2 -f 3 -b 60 --fp16 -o Adam -d 0.5 -s multistep -lr 1e-4 -e 100 -es 20 -v --use-messidor --warmup 10
Regression with aux loss 0.9134 ± 0.0044 0.779 reg_seresnext50_rms A15, ID, MD 4 folds train_regression_baseline.py -m reg_seresnext50_rms -a medium -f 0 -f 1 -f 2 -f 3 -b 60 --fp16 -o Adam -d 0.5 -s multistep -lr 1e-4 -e 100 -es 20 -v --use-messidor --warmup 10
-------------------------- ----------------- ------------ ----------------------- ---------------- --------- -
Regression with aux loss 0.9231 ± 0.0043 0.813 seresnextd50_gwap A15, ID, MD 4 folds train_regression_baseline.py -m seresnext50d_gwap -a medium -f 0 -f 1 -f 2 -f 3 -b 60 --size 512 --fp16 -o AdamW -wd 1e-4 -s multistep -lr 3e-4 -e 50 --use-idrid --use-messidor --use-aptos2019 -v --criterion-cls focal_kappa -l1 2e-4
Regression with aux loss 0.9216 ± 0.0035 0.809 seresnextd50_gap A15, ID, MD 4 folds train_regression_baseline.py -m seresnext50d_gap -a medium -f 0 -f 1 -f 2 -f 3 -b 60 --size 512 --fp16 -o AdamW -wd 1e-4 -s multistep -lr 3e-4 -e 50 --use-idrid --use-messidor --use-aptos2019 -v --criterion-cls focal_kappa -l1 2e-4
-------------------------- ----------------- ------------ ----------------------- ---------------- --------- -
Finetuned 806_813 0.9680 ± 0.0037 0.803
zen_golick 0.9142 ± 0.0049 0.770
zen_golick_T 0.9419 ± 0.0066 0.784
-------------------------- ----------------- ------------ ----------------------- ---------------- --------- -

|--------------------------------|-----------------|------------|-----------------------|----------------|---------|-| | happy_shirley | 0.8148 ± 0.0020 | 0.758 | eager_wright | | 0.771 | goofy_heyrovsky | | 0.785 |--------------------------------|-----------------|------------|-----------------------|----------------|---------|-|

|--------------------------------------------------|------------|-----------------------|----------------|---------|-| | ablation_study_seresnext50d_max_hard | 0.782 |
| ablation_study_seresnext50d_max_medium | 0.787 |
| ablation_study_seresnext50d_max_light | 0.765 |
|--------------------------------------------------|------------|-----------------------|----------------|---------|-| | ablation_study_seresnext50d_gwap_hard | 0.778 | | ablation_study_seresnext50d_gwap_medium | 0.794 |
| ablation_study_seresnext50d_gwap_light | 0.795 | |--------------------------------------------------|------------|-----------------------|----------------|---------|-| | ablation_study_seresnext50d_gap_hard | 0.797 | | ablation_study_seresnext50d_gap_medium | 0.802 | | ablation_study_seresnext50d_gap_light | 0.801 | |--------------------------------------------------|------------|-----------------------|----------------|---------|-| | ablation_study_seresnext50d_gwap_uda_medium| 0.787 | | ablation_study_seresnext50d_rank_medium | 0.765 | |--------------------------------------------------|------------|-----------------------|----------------|---------|-| | youthful_mccarthy | 0.791 | 0.9045 ± 0.0042 | |--------------------------------------------------|------------|-----------------------|----------------|---------|-| | heuristic_sinoussi (seresnext50) | 0.823 | 0.9162 ± 0.0055 | | heuristic_sinoussi_finetune | 0.822 | 0.9170 ± 0.0055 | |--------------------------------------------------|------------|-----------------------|----------------|---------|-| | modest_williams | 0.828 | 0.9198 ± 0.0032 | | modest_williams (finetune) | 0.828 | 0.9204 ± 0.0032 | | modest_williams + heuristic_sinoussi | 0.832 | | |--------------------------------------------------|------------|-----------------------|----------------|---------|-| | modest_williams + heuristic_sinoussi | 0.834 | | optimized thresholds on OOF [0.52704163, 1.47657166, 2.42753601, 3.3937439] | modest_williams + heuristic_sinoussi | 0.836 | | optimized thresholds on Aptos15? [0.52704163, 1.47657166, 2.42753601, 3.3937439 ] | modest_williams + heuristic_sinoussi | 0.836 | | optimized thresholds on Aptos15? [0.52704163, 1.47657166, 2.42753601, 3.3937439 ] |--------------------------------------------------|------------|-----------------------|----------------|---------|-| | inceptionv4_gap_happy_wright | 0.827 | 0.9154 ± 0.0044 | inceptionv4_gwap_cranky_torvalds | 0.824 | 0.9066 ± 0.0053 | seresnext50_rnn_clever_roentgen | 0.831 | 0.9118 ± 0.0057 |--------------------------------------------------|------------|-----------------------|----------------|---------|-| | modest_williams+heuristic_sinoussi+happy_wright | 0.843 | | modest_williams+heuristic_sinoussi+happy_wright | 0.844 | FlipLR | modest_williams+heuristic_sinoussi+happy_wright | 0.844 | Flip4, mean | | modest_williams+heuristic_sinoussi+happy_wright | 0.844 | FlipLR, median | | modest_williams+heuristic_sinoussi+happy_wright | 0.842 | Truncated mean |--------------------------------------------------|------------|-----------------------|----------------|---------|-| | heuristic_sinoussi+modest_williams++happy_wright+clever_roentgen | | | heuristic_sinoussi+modest_williams++happy_wright+clever_roentgen | 0.802 | logistic_regression | seresnet152-sad-ardinghelli | 0.816 | | happy_wright | 0.802 | | seresnext101_fpn_512_practical_wright | 806 | 0.9142 0.0064 | warmup FPN from | resnet34_gap_jovial_turing | 809 | 0.9088 0.0043 |--------------------------------------------------|------------|-----------------------|----------------|---------|-| |inceptionv4_gap_512_medium_aptos2019_messidor_idrid_pl1_fold0_wizardly_mestorf_main.pth | 823 |inceptionv4_gap_512_medium_aptos2019_messidor_idrid_pl1_fold0_wizardly_mestorf_warmup.pth |841 |seresnext50_gap_512_medium_fold0_vibrant_johnson.pth | 825 | |seresnext50_gap_512_medium_fold0_vibrant_johnson.pth | 822 | Non-optimal thresholds |--------------------------------------------------|------------|-----------------------|----------------|---------|-| | inceptionv4_gap_512_medium_pl1_epic_shaw | 843 | 0.9747 ± 0.0002 | warmup | inceptionv4_gap_512_medium_pl1_epic_shaw | 830 | ??? | main (fold 1,2,3) | seresnext101_gap_pl1_sad_neumann | 829 | 0.9747 ± 0.0002 | modest_williams+heuristic_sinoussi+happy_wright+shaw | | | inceptionv4_gap_512_medium_pl1_epic_shaw | | | warmup, normal + clahe

Extra data

  1. http://www.it.lut.fi/project/imageret/diaretdb1_v2_1/

References

  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961805/
  2. https://www.slideshare.net/EducacionMolina/diabetic-retinopathy-71884270
  3. http://defauw.ai/diabetic-retinopathy-detection/
  4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944099/
  5. http://eyesteve.com/diabetic-retinopathy-grading/
  6. http://eyesteve.com/diabetic-retinopathy-grading/
  7. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139148
  8. https://mlwave.com/kaggle-ensembling-guide/
  9. https://www.kaggle.com/amrmahmoud123/1-guide-to-ensembling-methods
  10. http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice/
  11. https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/src/correlations.py
  12. https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2734990

Other

Train on Aptos 2019

Validation on IDRID + MESSIDOR: 0.6325 / 0.6291 messidor TTA None Mean 0.5497315432994327 std 0.020016714451918216 MeanAvg 0.5370538498582897 idrid TTA None Mean 0.7221154799857236 std 0.02454628058174581 MeanAvg 0.7603479511540748 aptos2019 TTA None Mean 0.9720265955567333 std 0.0024721825621897855 MeanAvg 0.9873314014864271 aptos2015 TTA None Mean 0.471382231210149 std 0.02805589901308936 MeanAvg 0.4984512005316677