Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update CICE documentation with Compliance Testing Code from Andrew. #42

Merged
merged 6 commits into from
Dec 2, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions _sources/cice_1_introduction.rst.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
:tocdepth: 3

Introduction - CICE5
============================================

Expand Down
51 changes: 33 additions & 18 deletions _sources/cice_2_science_guide.rst.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
:tocdepth: 3

Science Guide
================

Expand Down Expand Up @@ -199,9 +201,10 @@ stable and unstable atmosphere–ice boundary layers. Define the
“stability”

.. math::
\Upsilon = {\kappa g z_\circ\over u^{*2}}
\left({\Theta^*\over\Theta_a\left(1+0.606Q_a\right)} +
{Q^*\over 1/0.606 + Q_a}\right),
\Upsilon = {\frac{\kappa g z_\circ}{u^{*2}}}
\left({\frac{\Theta^*}{\Theta_a\left(1+0.606Q_a\right)}} +
{\frac{Q^*}{{1/0.606} + Q_a}}\right),
:label: upsilon

where :math:`\kappa` is the von Karman constant, :math:`g` is
gravitational acceleration, and :math:`u^*`, :math:`\Theta^*` and
Expand All @@ -225,7 +228,8 @@ Neglecting form drag,the exchange coefficients :math:`c_u`,
:math:`c_\theta` and :math:`c_q` are initialized as

.. math::
\kappa\over \ln(z_{ref}/z_{ice})
\frac{\kappa}{\ln(z_{ref}/z_{ice}})
:label: coeffinit

and updated during a short iteration, as they depend upon the turbulent
scales. The number of iterations is set by the namelist variable
Expand All @@ -242,8 +246,9 @@ unstable (:math:`\Upsilon <0`) case are given by
\begin{aligned}
\psi_m = &\mbox{}&2\ln\left[0.5(1+\chi)\right] +
\ln\left[0.5(1+\chi^2)\right] -2\tan^{-1}\chi +
{\pi\over 2}, \\
{\frac{\pi}{2}}, \\
\psi_s = &\mbox{}&2\ln\left[0.5(1+\chi^2)\right].\end{aligned}
:label: psi1

In a departure from the parameterization used in
:cite:`KL02`, we use profiles for the stable case
Expand All @@ -252,14 +257,16 @@ following :cite:`JAM99`,
.. math::
\psi_m = \psi_s = -\left[0.7\Upsilon + 0.75\left(\Upsilon-14.3\right)
\exp\left(-0.35\Upsilon\right) + 10.7\right].
:label: psi2

The coefficients are then updated as

.. math::
\begin{aligned}
c_u^\prime&=&{c_u\over 1+c_u\left(\lambda-\psi_m\right)/\kappa} \\
c_\theta^\prime&=& {c_\theta\over 1+c_\theta\left(\lambda-\psi_s\right)/\kappa}\\
c_u^\prime&=&{\frac{c_u}{1+c_u\left(\lambda-\psi_m\right)/\kappa}} \\
c_\theta^\prime&=& {\frac{c_\theta}{1+c_\theta\left(\lambda-\psi_s\right)/\kappa}}\\
c_q^\prime&=&c_\theta^\prime\end{aligned}
:label: coeff2

where :math:`\lambda = \ln\left(z_\circ/z_{ref}\right)`. The
first iteration ends with new turbulent scales from
Expand All @@ -268,10 +275,11 @@ heat flux coefficients are computed, along with the wind stress:

.. math::
\begin{aligned}
\nonumber
C_l&=&\rho_a \left(L_{vap}+L_{ice}\right) u^* c_q \\
C_s&=&\rho_a c_p u^* c_\theta^* + 1, \\
\vec{\tau}_a&=&{\rho_a u^{*2}\vec{U}_a\over |\vec{U}_a|},\end{aligned}
\vec{\tau}_a&=&{\rho_a \frac{u^{*2}\vec{U}_a}{|\vec{U}_a|}},\end{aligned}
:label: coeff3


where :math:`L_{vap}` and :math:`L_{ice}` are
latent heats of vaporization and fusion, :math:`\rho_a` is the density
Expand Down Expand Up @@ -299,6 +307,7 @@ computed as

.. math::
F_{lw\downarrow} = \epsilon\sigma T_s^4 - \epsilon\sigma T_a^4(0.39-0.05e_a^{1/2})(1-0.8f_{cld}) - 4\epsilon\sigma T_a^3(T_s-T_a)
:label: lwflux

where the atmospheric vapor pressure (mb) is
:math:`e_a = 1000 Q_a/(0.622+0.378Q_a)`, :math:`\epsilon=0.97` is the
Expand All @@ -313,6 +322,7 @@ available in function *longwave\_parkinson\_washington*:

.. math::
F_{lw\downarrow} = \epsilon\sigma T_a^4 (1-0.261 \exp\left(-7.77\times 10^{-4}T_a^2\right)\left(1 + 0.275f_{cld}\right)
:label: lwflux2

The value of :math:`F_{lw\uparrow}` is different for each ice thickness
category, while :math:`F_{lw\downarrow}` depends on the mean value of
Expand All @@ -324,7 +334,8 @@ incorporates the cloud fraction and humidity through the atmospheric
vapor pressure:

.. math::
F_{sw\downarrow} = {1353 \cos^2 Z \over {10^{-3}(\cos Z+2.7)e_a + 1.085\cos Z + 0.1}}\left(1-0.6 f_{cld}^3\right) > 0
F_{sw\downarrow} = {\frac{1353 \cos^2 Z}{10^{-3}(\cos Z+2.7)e_a + 1.085\cos Z + 0.1}}\left(1-0.6 f_{cld}^3\right) > 0
:label: swflux

where :math:`\cos Z` is the cosine of the solar zenith angle.

Expand Down Expand Up @@ -395,6 +406,7 @@ to the ice,
\begin{aligned}
\vec{\tau}_w&=&c_w\rho_w\left|{\vec{U}_w-\vec{u}}\right|\left[\left(\vec{U}_w-\vec{u}\right)\cos\theta
+\hat{k}\times\left(\vec{U}_w-\vec{u}\right)\sin\theta\right] \end{aligned}
:label: tauw

is then passed to the flux coupler (relative to the ocean) for use by
the ocean model. Here, :math:`\theta` is the turning angle between
Expand Down Expand Up @@ -733,7 +745,7 @@ ice volume :math:`v_{in}`, and snow volume :math:`v_{sn}` for each
thickness category :math:`n` are

.. math::
{\partial\over\partial t} (a_{in}) + \nabla \cdot (a_{in} {\bf u}) = 0,
{\frac{\partial}{\partial t}} (a_{in}) + \nabla \cdot (a_{in} {\bf u}) = 0,
:label: transport-ai

.. math::
Expand Down Expand Up @@ -804,11 +816,11 @@ equations for pond area fraction :math:`a_{pnd}a_i` and pond volume
:math:`h_{pnd}a_{pnd}a_i`, given the ice velocity :math:`\bf u`, are

.. math::
{\partial\over\partial t} (a_{pnd}a_{i}) + \nabla \cdot (a_{pnd}a_{i} {\bf u}) = 0,
{\frac{\partial}{\partial t}} (a_{pnd}a_{i}) + \nabla \cdot (a_{pnd}a_{i} {\bf u}) = 0,
:label: transport-apnd

.. math::
{\partial\over\partial t} (h_{pnd}a_{pnd}a_{i}) + \nabla \cdot (h_{pnd}a_{pnd}a_{i} {\bf u}) = 0.
{\frac{\partial}{\partial t}} (h_{pnd}a_{pnd}a_{i}) + \nabla \cdot (h_{pnd}a_{pnd}a_{i} {\bf u}) = 0.
:label: transport-hpnd

(These equations represent quantities within one thickness category;
Expand Down Expand Up @@ -861,6 +873,7 @@ tracer-on-tracer dependencies such as :math:`h_{pnd}`, when needed:

.. math::
h_{pnd}^{t+\Delta t}= {h_{pnd}^{t}a_{pnd}^{t}a_{i}^{t} \over a_{pnd}^{t+\Delta t}a_{i}^{t+\Delta t} }.
:label: hpnd

In this case (adding new ice), :math:`h_{pnd}` does not change because
:math:`a_{pnd}^{t+\Delta t}a_{i}^{t+\Delta t} = a_{pnd}^{t}a_{i}^{t}`.
Expand All @@ -870,14 +883,15 @@ the total pond area summed over categories :math:`n`,

.. math::
\sum_n a_{pnd}^{t+\Delta t}(n)a_{i}^{t+\Delta t}(n) = \sum_n a_{pnd}^{t}(n)a_{i}^{t}(n).
:label: apnd2

Thus,

.. math::
\begin{aligned}
\label{eq:xfer}
a_{pnd}^{t+\Delta t}(m)&=& {\sum_n a_{pnd}^{t}(n)a_{i}^{t}(n) - \sum_{n\ne m} a_{pnd}^{t+\Delta t}(n)a_{i}^{t+\Delta t}(n) \over a_i^{t+\Delta t}(m) } \\
= {a_{pnd}^t(m)a_i^t(m) + \sum_{n\ne m} \Delta \left(a_{pnd}a_i\right)^{t+\Delta t} \over a_i^{t+\Delta t}(m) }\end{aligned}
a_{pnd}^{t+\Delta t}(m) &=& {\sum_n a_{pnd}^{t}(n)a_{i}^{t}(n) - \sum_{n\ne m} a_{pnd}^{t+\Delta t}(n)a_{i}^{t+\Delta t}(n) \over a_i^{t+\Delta t}(m) } \\
&=& {a_{pnd}^t(m)a_i^t(m) + \sum_{n\ne m} \Delta \left(a_{pnd}a_i\right)^{t+\Delta t} \over a_i^{t+\Delta t}(m) }\end{aligned}
:label: xfer

This is more complicated because of the :math:`\Delta` term on the
right-hand side, which is handled manually in **ice\_itd.F90**. Such
Expand Down Expand Up @@ -1063,6 +1077,7 @@ the form

.. math::
\frac{d T_b}{dt} = w_b \frac{\Delta T_b}{\Delta z} + R_b({T_j : j = 1,\ldots,N_b})
:label: tracer1

where :math:`R_b` represents the nonlinear biochemical reaction terms
detailed in :cite:`EDHHJJLS12` and :math:`\Delta z` is a
Expand Down Expand Up @@ -3030,7 +3045,7 @@ the ridge potential energy is modified:
.. math::
P = C_f \, C_p \, \beta \sum_{n=1}^{N_C}
\left[ -a_{Pn} \, h_n^2 + \frac{a_{Pn}}{k_n}
\left( H_{\min}^2 + 2H_{\min}\lambda + 2 \lambda^2 \right) \right] % CHECK BRACES
\left( H_{\min}^2 + 2H_{\min}\lambda + 2 \lambda^2 \right) \right]
:label: roth-strength1

The energy-based ice strength given by Equations :eq:`roth-strength0` or
Expand Down Expand Up @@ -4293,7 +4308,7 @@ to the temperature, :math:`T`, and the brine volume, :math:`\phi`, by
\begin{aligned}
q =& \phi q_{br} &+\, (1-\phi) q_{i}
=& \phi \rho_{w} c_{w} T &+\, (1-\phi) (\rho_i c_i T - \rho_i L_0)
\label{enthalpy_definition}\end{aligned}
\end{aligned}
:label: enth-def

where :math:`q_{br}` is the brine enthalpy, :math:`q_i` is the pure ice
Expand Down
Loading