-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
394 lines (304 loc) · 18.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
"""
Main program script.
"""
import argparse
import datetime
from pathlib import Path
import time
import torch
from torch.distributed.elastic.multiprocessing.errors import record
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler, SequentialSampler
from datasets.build import build_dataset
from engine import evaluate, save_checkpoint, save_log, train
from models.archs.build import build_arch
from utils.analysis import analyze_model
from utils.comparison import compare_models
from utils.data import collate_fn, SubsetSampler
import utils.distributed as distributed
from utils.profiling import profile_model
from utils.tide import tide_analysis
def get_parser():
parser = argparse.ArgumentParser(add_help=False)
# General
parser.add_argument('--device', default='cuda', type=str, help='name of device to use')
parser.add_argument('--checkpoint_full', default='', type=str, help='path to checkpoint to fully resume from')
parser.add_argument('--checkpoint_part', default='', type=str, help='path to checkpoint to partly resume from')
parser.add_argument('--disable_strict_loading', action='store_true', help='disable strict model loading')
parser.add_argument('--output_dir', default='', type=str, help='path to output directory')
# Distributed
parser.add_argument('--dist_url', default='env://', type=str, help='url used to set up distributed training')
# Dataset
parser.add_argument('--dataset', default='coco', type=str, help='name of dataset')
parser.add_argument('--train_split', default='2017_train', type=str, help='name of the training split')
parser.add_argument('--eval_split', default='2017_val', type=str, help='name of the evaluation split')
parser.add_argument('--eval_nms_thr', default=0.5, type=float, help='IoU threshold during evaluation NMS')
# Transforms
parser.add_argument('--train_transforms_type', default='multi_scale', type=str, help='training transforms type')
parser.add_argument('--eval_transforms_type', default='single_scale', type=str, help='evaluation transforms type')
# Data loading
parser.add_argument('--batch_size', default=2, type=int, help='batch size per device')
parser.add_argument('--num_workers', default=2, type=int, help='number of subprocesses to use for data loading')
# Training
parser.add_argument('--eval_freq', default=1, type=int, help='evaluation frequency during training')
# Evaluation
parser.add_argument('--eval', action='store_true', help='perform evaluation task instead of training')
parser.add_argument('--eval_task', default='performance', type=str, help='name of the evaluation task')
parser.add_argument('--eval_with_bnd', action='store_true', help='also evaluate segmentations with boundary IoU')
# * Analysis
parser.add_argument('--analysis_samples', default=100, type=int, help='number of samples used for model analysis')
parser.add_argument('--analysis_train_only', action='store_true', help='only analyze model in training mode')
parser.add_argument('--analysis_inf_only', action='store_true', help='only analyze model in inference mode')
parser.add_argument('--analysis_save', action='store_true', help='whether to save analysis results')
# * Comparison
parser.add_argument('--comp_res_file1', default='', type=str, help='path to first result file to be compared')
parser.add_argument('--comp_res_file2', default='', type=str, help='path to second result file to be compared')
parser.add_argument('--comp_save_name', default='', type=str, help='name of file saving comparison results')
# * Performance
parser.add_argument('--perf_save_res', action='store_true', help='save results even when having annotations')
parser.add_argument('--perf_save_tag', default='single_scale', type=str, help='tag used in evaluation file names')
parser.add_argument('--perf_with_vis', action='store_true', help='also gather visualizations during evaluation')
# * Profiling
parser.add_argument('--profile_samples', default=10, type=int, help='number of samples used for model profiling')
parser.add_argument('--profile_train_only', action='store_true', help='only profile model in training mode')
parser.add_argument('--profile_inf_only', action='store_true', help='only profile model in inference mode')
# * TIDE
parser.add_argument('--tide_file_name', default='', type=str, help='name of result file used for TIDE analysis')
# * Visualization
parser.add_argument('--num_images', default=10, type=int, help='number of images to be visualized')
parser.add_argument('--image_offset', default=0, type=int, help='image id of first image to be visualized')
parser.add_argument('--random_offset', action='store_true', help='generate random image offset')
parser.add_argument('--vis_score_thr', default=0.4, type=float, help='score threshold used during visualization')
# Architecture
parser.add_argument('--arch_type', default='bch', type=str, help='type of architecture module')
# * MMDetection architecture
parser.add_argument('--mmdet_arch_cfg_path', default='', type=str, help='path to MMDetection architecture config')
# Backbone
parser.add_argument('--backbone_type', default='resnet', type=str, help='type of backbone module')
parser.add_argument('--backbone_cfg_path', default='', type=str, help='path to the backbone config')
# * MMDetection backbone
parser.add_argument('--mmdet_backbone_cfg_path', default='', type=str, help='path to MMDetection backbone config')
# * ResNet
parser.add_argument('--resnet_name', default='resnet50', type=str, help='full name of the desired ResNet model')
parser.add_argument('--resnet_out_ids', nargs='*', default=[3, 4, 5], type=int, help='ResNet output map indices')
parser.add_argument('--resnet_dilation', action='store_true', help='whether to use dilation for last ResNet layer')
# Core
parser.add_argument('--cores', nargs='*', default='', type=str, help='names of desired cores')
parser.add_argument('--core_cfg_paths', nargs='*', default='', type=str, help='paths to core configs')
parser.add_argument('--core_ids', nargs='*', default=[3, 4, 5, 6, 7], type=int, help='core feature map indices')
# * GC (Generalized Core)
parser.add_argument('--gc_yaml', default='', type=str, help='path to yaml-file with GC specification')
# * MMDetection core
parser.add_argument('--mmdet_core_cfg_path', default='', type=str, help='path to MMDetection core config')
# Heads
parser.add_argument('--heads', nargs='*', default='', type=str, help='names of desired heads')
parser.add_argument('--head_cfg_paths', nargs='*', default='', type=str, help='paths to head configs')
# Optimizer
parser.add_argument('--max_grad_norm', default=-1, type=float, help='maximum gradient norm during training')
parser.add_argument('--weight_decay', default=1e-4, type=float, help='L2 weight decay coefficient')
# * Learning rates (General)
parser.add_argument('--lr_default', default=1e-4, type=float, help='default learning rate')
parser.add_argument('--lr_backbone', default=1e-5, type=float, help='backbone learning rate')
# * Learning rates (BCH)
parser.add_argument('--lr_core', default=1e-4, type=float, help='core learning rate')
parser.add_argument('--lr_heads', default=1e-4, type=float, help='heads learning rate')
# * Learning rates (Deformable DETR)
parser.add_argument('--lr_reference_points', default=1e-5, type=float, help='reference points learning rate')
# * Learning rates (MMDetArch)
parser.add_argument('--lr_neck', default=1e-4, type=float, help='neck learning rate')
# * Learning rates (MSDA)
parser.add_argument('--lr_offset', default=1e-5, type=float, help='learning rate of deformable offsets')
# Scheduler
parser.add_argument('--epochs', default=12, type=int, help='total number of training epochs')
parser.add_argument('--lr_drops', nargs='*', default=[9], type=int, help='epochs of learning rate drops')
return parser
@record
def main(args):
"""
Function containing the main program script.
Args:
args (argparse.Namespace): Command-line arguments.
Raises:
ValueError: Error when in distributed mode for the 'analysis' evaluation task.
ValueError: Error when in distributed mode for the 'profile' evaluation task.
ValueError: Error when no output directory could be determined for the 'visualize' evaluation task.
ValueError: Error when in distributed mode for the 'visualize' evaluation task.
ValueError: Error when an unknown evaluation task is provided.
"""
# Try loading checkpoint
checkpoint_path = ''
if args.checkpoint_full:
try:
checkpoint = torch.load(args.checkpoint_full, map_location='cpu')
checkpoint_path = args.checkpoint_full
change_scheduler = False
except FileNotFoundError:
pass
if not checkpoint_path and args.checkpoint_part:
checkpoint = torch.load(args.checkpoint_part, map_location='cpu')
checkpoint_path = args.checkpoint_part
change_scheduler = True
# Get output directory
if args.output_dir:
output_dir = Path(args.output_dir)
elif checkpoint_path:
output_dir = Path(checkpoint_path).parent
else:
output_dir = None
# Compare two models if requested and return
if args.eval_task == 'comparison':
output_dir = Path(('/').join(args.comp_res_file1.split('/')[:-1]))
save_name = args.comp_save_name
compare_models(args.dataset, args.eval_split, args.comp_res_file1, args.comp_res_file2, output_dir, save_name)
return
# Perform TIDE analysis if requested and return
elif args.eval_task == 'tide':
tide_analysis(args.dataset, args.tide_file_name, output_dir)
return
# Initialize distributed mode if needed
distributed.init_distributed_mode(args)
print(args)
# Get datasets and evaluator
datasets, evaluator = build_dataset(args)
# Build model and place it on correct device
device = torch.device(args.device)
model = build_arch(args)
model = model.to(device)
# Load model from checkpoint if present
if checkpoint_path:
strict = not args.disable_strict_loading
model.load_state_dict(checkpoint['model'], strict=strict)
# Wrap model into DistributedDataParallel (DDP) if needed
if args.distributed:
model = DistributedDataParallel(model, device_ids=[args.gpu])
# Set 'requires_masks' attribute of datasets
for dataset in datasets.values():
dataset.requires_masks = args.requires_masks
# Get shared dataloader keyword arguments
dataloader_kwargs = {'collate_fn': collate_fn, 'num_workers': args.num_workers, 'pin_memory': True}
# Get training dataloader if needed
if not args.eval:
train_dataset = datasets['train']
train_sampler = DistributedSampler(train_dataset) if args.distributed else RandomSampler(train_dataset)
train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
train_dataloader = DataLoader(train_dataset, batch_sampler=train_batch_sampler, **dataloader_kwargs)
# Get evaluation dataloader
eval_dataset = datasets['eval']
if args.eval and args.eval_task == 'visualize':
eval_sampler = SubsetSampler(eval_dataset, args.num_images, args.image_offset, args.random_offset)
elif args.distributed:
eval_sampler = DistributedSampler(eval_dataset, shuffle=False)
else:
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, args.batch_size, sampler=eval_sampler, **dataloader_kwargs)
# Get default optimizer and scheduler
param_families = model.module.get_param_families() if args.distributed else model.get_param_families()
param_families = ['offset', 'reference_points', *param_families, 'default']
param_dicts = {family: {'params': [], 'lr': getattr(args, f'lr_{family}')} for family in param_families}
for param_name, parameter in model.named_parameters():
if parameter.requires_grad:
for family_name in param_families:
if family_name in param_name or family_name == 'default':
param_dicts[family_name]['params'].append(parameter)
break
for family_name in param_families:
if len(param_dicts[family_name]['params']) == 0:
param_dicts.pop(family_name)
elif param_dicts[family_name]['lr'] <= 0:
for parameter in param_dicts[family_name]['params']:
parameter.requires_grad_(False)
param_dicts.pop(family_name)
optimizer = torch.optim.AdamW(param_dicts.values(), weight_decay=args.weight_decay)
optimizer.param_group_names = list(param_dicts.keys())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, args.lr_drops)
# Update default optimizer and/or scheduler based on checkpoint
if checkpoint_path:
if change_scheduler:
for param_group in checkpoint['optimizer']['param_groups']:
param_group['lr'] = param_group['initial_lr']
optimizer.load_state_dict(checkpoint['optimizer'])
optimizer.step()
for _ in range(checkpoint['epoch']):
scheduler.step()
else:
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
# Perform evaluation task if requested
if args.eval:
# Perform model analysis and return
if args.eval_task == 'analysis':
if args.distributed:
error_msg = "Distributed mode is not supported for the 'analysis' evaluation task."
raise ValueError(error_msg)
analyze_train = args.analysis_train_only or not args.analysis_inf_only
analyze_inf = args.analysis_inf_only or not args.analysis_train_only
output_dir = output_dir if args.analysis_save else None
analysis_kwargs = {'num_samples': args.analysis_samples, 'analyze_train': analyze_train}
analysis_kwargs = {**analysis_kwargs, 'analyze_inf': analyze_inf, 'output_dir': output_dir}
analyze_model(model, eval_dataloader, optimizer, max_grad_norm=args.max_grad_norm, **analysis_kwargs)
return
# Evaluate model performance and return
elif args.eval_task == 'performance':
perf_kwargs = {'eval_with_bnd': args.eval_with_bnd, 'save_stats': True, 'save_results': args.perf_save_res}
perf_kwargs = {**perf_kwargs, 'save_tag': f'{args.eval_split}_{args.perf_save_tag}'}
perf_kwargs = {**perf_kwargs, 'visualize': args.perf_with_vis, 'vis_score_thr': args.vis_score_thr}
evaluate(model, eval_dataloader, evaluator=evaluator, output_dir=output_dir, **perf_kwargs)
return
# Perform model profiling and return
elif args.eval_task == 'profile':
if args.distributed:
error_msg = "Distributed mode is not supported for the 'profile' evaluation task."
raise ValueError(error_msg)
profile_train = args.profile_train_only or not args.profile_inf_only
profile_inf = args.profile_inf_only or not args.profile_train_only
profile_kwargs = {'num_samples': args.profile_samples, 'profile_train': profile_train}
profile_kwargs = {**profile_kwargs, 'profile_inf': profile_inf, 'output_dir': output_dir}
profile_model(model, eval_dataloader, optimizer, max_grad_norm=args.max_grad_norm, **profile_kwargs)
return
# Visualize model predictions and return
elif args.eval_task == 'visualize':
if output_dir is None:
error_msg = "The 'visualize' evaluation task requires an output directory, but no output directory "
error_msg += "was given or could be derived from checkpoint."
raise ValueError(error_msg)
if args.distributed:
error_msg = "Distributed mode is not supported for the 'visualize' evaluation task."
raise ValueError(error_msg)
if args.batch_size > 1:
msg = "It's recommended to use 'batch_size=1' for the 'visualize' evaluation task, so that the printed "
msg += "loss and analysis dictionaries are image-specific."
print(msg)
vis_kwargs = {'print_freq': 1, 'visualize': True, 'vis_score_thr': args.vis_score_thr}
evaluate(model, eval_dataloader, output_dir=output_dir, **vis_kwargs)
return
# Raise error
else:
error_msg = f"An unknown evaluation task was provided (got '{args.eval_task}')."
raise ValueError(error_msg)
# Get start epoch
start_epoch = checkpoint['epoch']+1 if checkpoint_path else 1
# Start training timer
start_time = time.time()
# Main training loop
for epoch in range(start_epoch, args.epochs+1):
train_sampler.set_epoch(epoch) if args.distributed else None
train_stats = train(model, train_dataloader, optimizer, epoch, max_grad_norm=args.max_grad_norm)
scheduler.step()
checkpoint_model = model.module if args.distributed else model
save_checkpoint(args, epoch, checkpoint_model, optimizer, scheduler)
if epoch % args.eval_freq == 0:
eval_stats = evaluate(model, eval_dataloader, evaluator=evaluator, epoch=epoch)
else:
eval_stats = None
save_log(args.output_dir, epoch, train_stats, eval_stats)
distributed.synchronize()
# End training timer and report total training time
total_time = time.time() - start_time
total_time = str(datetime.timedelta(seconds=int(total_time)))
print(f"Training {args.epochs+1 - start_epoch} epochs finished after {total_time}")
if __name__ == '__main__':
prog = "python main.py"
description = "Main training and evaluation script"
fmt = argparse.MetavarTypeHelpFormatter
parser = argparse.ArgumentParser(prog=prog, description=description, parents=[get_parser()], formatter_class=fmt)
main(parser.parse_args())