Skip to content

Research done on object detection and segmentation during my PhD.

Notifications You must be signed in to change notification settings

CedricPicron/DetSeg

Repository files navigation

DetSeg

Research done on object detection and segmentation during my PhD. Enjoy!

📀 Main results

Results on the 2017 COCO validation set. The inference FLOPs and FPS are measured on the first 100 images of the 2017 COCO validation set using an NVIDIA GeForce RTX 3060 Ti GPU.

Object Detection (FQDet)

Backbone Head Epochs AP Params GFLOPs FPS Script Log Cp
R50+FPN FQDet 12 43.3 33.9 M 99.0 20.9 script log cp
R50+TPN FQDet 12 45.5 42.2 M 107.8 13.6 script log cp
R50+DefEnc-P3 FQDet 12 47.2 44.1 M 234.8 9.7 script log cp

Object Detection (FQDetV2)

Backbone Head Epochs AP Params GFLOPs FPS Script Log Cp
R50+FPN FQDetV2 12 47.0 37.9 M 117.4 17.7 script log cp
R50+DefEnc-P3 FQDetV2 12 50.8 48.1 M 256.1 15.5 script log cp
R50+DefEnc-P2 FQDetV2 12 51.7 48.4 M 747.0 6.8 script log cp
SwL+DefEnc-P3 FQDetV2 12 58.2 218.7 M 875.4 5.8 script log cp

Instance Segmentation (EffSeg)

Backbone Head Epochs AP Params GFLOPs FPS Script Log Cp
R50+FPN Mask R-CNN++ 12 41.3 40.5 M 226.7 10.4 script log cp
R50+FPN PointRend++ 12 42.0 40.8 M 296.2 6.6 script log cp
R50+FPN RefineMask++ 12 42.7 44.2 M 455.1 6.3 script log cp
R50+FPN EffSeg (ours) 12 42.4 41.8 M 262.6 7.5 script log cp

Panoptic Segmentation (EffSeg)

Backbone Head Epochs PQ Params GFLOPs FPS Script Log Cp
R50+FPN Mask R-CNN++ 12 45.8 40.6 M 218.6 9.9 script log cp
R50+FPN PointRend++ 12 47.0 40.9 M 289.7 6.3 script log cp
R50+FPN RefineMask++ 12 47.2 44.2 M 433.2 6.3 script log cp
R50+FPN EffSeg (ours) 12 47.0 41.8 M 262.6 6.7 script log cp

📃 Papers and thesis

🛠️ Installation

  • Environment:

    1. Install the conda package and environment management system if not already done.
    2. Execute source setup_env.sh.
  • Data preparation:

    1. Download the desired datasets.
    2. Modify the paths in setup_data.sh to point to your installation directories.
    3. Execute source setup_data.sh.

🌱 Usage

  • Training: Execute python main.py with the desired command-line arguments. Some example training scripts, which were used to obtain the results from above, are found in the scripts directory.

  • Evalutation: Execute python main.py --eval --eval_task $TASK with the desired command-line arguments, with $TASK chosen from:

    1. analysis: Analyze the computional cost of the given model.
    2. comparison: Compare the results from two different models.
    3. performance: Compute the model performance on the desired benchmark.
    4. profile: Profile the given model.
    5. tide: Perform TIDE analysis of given model.
    6. visualize: Visualize the model predictions.

About

Research done on object detection and segmentation during my PhD.

Topics

Resources

Stars

Watchers

Forks

Languages