日志
- 添加工厂类注册,来源cosmos
- 添加人群密度计数DM-Count
- 添加LPR,车牌检测网络retinaLP检测框和关键点模型来源,车牌识别网络LPRNet
- 添加nanodet多种backbone,EfficientNet-lite Rep-VGG,dynamic batch不支持
- 添加原工程的centernet、dbface,dynamic batch 未支持
- 添加原工程插件,解析不用Tensorrt中nvonnxparser.lib,加入onnx-tensorrt便于插件修改
- 添加人脸相似度计算,参考mnn_example整合人脸代码,检测-对齐-关键点-性别|年龄-相似度
- 添加landmark、gender-age
- 添加ghostnet
- 添加arcface
- 添加retinaface,使用pytorch版,mxnet版
- 添加centerface
- 添加nanodet,dynamic batch 未支持
- 更新库lean及模型(cuda11.0、cudnn8.0.5、tensorRT7.2.2.3,转onnx流程)
- YOLOv3-SPP、YOLOv4检测流程同YOLOv5,仅修改config即可
- 添加yaml读取配置文件
- 添加YOLOv5,直接使用版focus未优化
onnx的plugin暂时移除,cmake编译未修改
=======================================================================
=======================================================================
=======================================================================
- Support pytorch onnx plugin(DCN、HSwish ... etc.)
- Simpler inference and plugin APIs
install protobuf == 3.11.4 (or >= 3.8.x, But it's more troublesome)
bash scripts/getALL.sh
make run -j32
auto engine = TRTInfer::loadEngine("models/efficientnet-b0.fp32.trtmodel");
float mean[3] = {0.485, 0.456, 0.406};
float std[3] = {0.229, 0.224, 0.225};
Mat image = imread("img.jpg");
auto input = engine->input();
// multi batch sample
input->resize(2);
input->setNormMatGPU(0, image, mean, std);
input->setNormMatGPU(1, image, mean, std);
engine->forward();
// get result and copy to cpu
engine->output(0)->cpu<float>();
engine->tensor("hm")->cpu<float>();
- tensorRT7.0 or tensorRT6.0
- opencv3.4.6
- cudnn7.6.3
- cuda10.0
- protobuf v3.8.x
- Visual Studio 2017
- lean-windows.zip (include tensorRT、opencv、cudnn、cuda、protobuf)
- Pytorch export ONNX: plugin_onnx_export.py
- MReLU.cu 、HSwish.cu、DCNv2.cu