This repository is a Tensorflow implementation of the WGAN-GP for MNIST, CIFAR-10, and ImageNet64.
- All samples in README.md are genearted by neural network except the first image for each row.
- python 3.5, 3.6 or 3.7
- python3-tk
Ubuntu/Debian/etc.:
sudo apt install python3.5 python3.5-tk
python -m venv venv
Windows:
venv/Scripts/activate
Bash:
source venv/bin/activate
pip install -r requirements.d/venv.txt
tox --notest
That will install tensorflow which uses only the CPU.
To use an Nvidia GPU:
.tox/py35/bin/python -m pip uninstall tensorflow
.tox/py35/bin/python -m pip install tensorflow-gpu==1.13.1
.tox/py36/bin/python -m pip uninstall tensorflow
.tox/py36/bin/python -m pip install tensorflow-gpu==1.13.1
.tox/py37/bin/python -m pip uninstall tensorflow
.tox/py37/bin/python -m pip install tensorflow-gpu==1.13.1
To use an AMD GPU:
.tox/py35/bin/python -m pip uninstall tensorflow
.tox/py35/bin/python -m pip install tensorflow-rocm==1.13.1
.tox/py36/bin/python -m pip uninstall tensorflow
.tox/py36/bin/python -m pip install tensorflow-rocm==1.13.1
.tox/py36/bin/python -m pip uninstall tensorflow
.tox/py37/bin/python -m pip install tensorflow-rocm==1.13.1
Results from 2-dimensional of the 8 Gaussian Mixture Models, 25 Gaussian Mixture Models, and Swiss Roll data. Ipython Notebook.
Note: To demonstrate following experiment, we held the generator distribution Pg fixed at the real distribution plus unit-variance Gaussian noise.
- Top: GAN discriminator
- Middle: WGAN critic with weight clipping
- Bottom: WGAN critic with weight penalty
Note: For the next experiment, we did not fix generator and showed generated points by the generator.
- Top: GAN discriminator
- Middle: WGAN critic with weight clipping
- Bottom: WGAN critic with weight penalty
'MNIST' and 'CIFAR10' dataset will be downloaded automatically from the code if in a specific folder there are no dataset. 'ImageNet64' dataset can be download from the Downsampled ImageNet.
.
│ WGAN-GP
│ ├── src
│ │ ├── imagenet (folder saved inception network weights that downloaded from the inception_score.py)
│ │ ├── cache.py
│ │ ├── cifar10.py
│ │ ├── dataset.py
│ │ ├── dataset_.py
│ │ ├── download.py
│ │ ├── inception_score.py
│ │ ├── main.py
│ │ ├── plot.py
│ │ ├── solver.py
│ │ ├── tensorflow_utils.py
│ │ ├── utils.py
│ │ └── wgan_gp.py
│ Data
│ ├── mnist
│ ├── cifar10
│ └── imagenet64
src: source codes of the WGAN-GP
Use main.py
to train a WGAN-GP network. Example usage:
python main.py
-
gpu_index
: gpu index, default:0
-
batch_size
: batch size for one feed forward, default:64
-
dataset
: dataset name from [mnist, cifar10, imagenet64], default:mnist
-
is_train
: training or inference mode, default:True
-
learning_rate
: initial learning rate for Adam, default:0.001
-
num_critic
: the number of iterations of the critic per generator iteration, default:5
-
z_dim
: dimension of z vector, default:128
-
lambda_
: gradient penalty lambda hyperparameter, default:10.
-
beta1
: beta1 momentum term of Adam, default:0.5
-
beta2
: beta2 momentum term of Adam, default:0.9
-
iters
: number of interations, default:200000
-
print_freq
: print frequency for loss, default:100
-
save_freq
: save frequency for model, default:10000
-
sample_freq
: sample frequency for saving image, default:500
-
inception_freq
: calculation frequence of the inception score, default:1000
-
sample_batch
: number of sampling images for check generator quality, default:64
-
load_model
: folder of save model that you wish to test, (e.g. 20181120-1558). default:None
Note: From the following figures, the Y axises are tge negative critic loss for the WGAN-GP.
- MNIST
- CIFAR10
- IMAGENET64
Note: Inception score was calculated every 1000 iterations.
Use main.py
to test a WGAN-GP network. Example usage:
python main.py --is_train=false --load_model=folder/you/wish/to/test/e.g./20181120-1558
Please refer to the above arguments.
@misc{chengbinjin2018wgan-gp,
author = {Cheng-Bin Jin},
title = {WGAN-GP-tensorflow},
year = {2018},
howpublished = {\url{https://github.com/ChengBinJin/WGAN-GP-tensorflow}},
note = {commit xxxxxxx}
}
- This project borrowed some code from igul222.
- Some readme formatting was borrowed from Logan Engstrom.
Copyright (c) 2018 Cheng-Bin Jin. Contact me for commercial use (or rather any use that is not academic research) (email: sbkim0407@gmail.com). Free for research use, as long as proper attribution is given and this copyright notice is retained.