Code for paper Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data Programming (VLDB 2023)
python3 -m venv nemo_venv
source nemo_venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt
pip uninstall -y nvidia_cublas_cu11
gdown 1C48r6FCw-hU6ACbO9BMIgdtHkJn6AMB2
unzip nemo_data.zip && rm nemo_data.zip
Under directory src/
:
- Snorkel (select by random):
python interactive_dp.py --dataset AmazonReview --label-model snorkel --soft-training --query-method random
- Snorkel-Abs (select by abstain):
python interactive_dp.py --dataset AmazonReview --label-model snorkel --soft-training --query-method abstain
- Snorkel-Dis (select by disagreement):
python interactive_dp.py --dataset AmazonReview --label-model snorkel --soft-training --query-method disagreement
- Nemo:
python interactive_dp.py --dataset AmazonReview --label-model snorkel --soft-training --query-method uncertainty_lm --seu --aggregate weighted --discard grid
If you find this repository useful, please consider citing:
@article{hsieh2022nemo,
title={Nemo: Guiding and contextualizing weak supervision for interactive data programming},
author={Hsieh, Cheng-Yu and Zhang, Jieyu and Ratner, Alexander},
journal={arXiv preprint arXiv:2203.01382},
year={2022}
}