Skip to content

Guiding and Contextualizing Weak Supervision for Interactive Data Programming

Notifications You must be signed in to change notification settings

ChengYuHsieh/Nemo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 

Repository files navigation

Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data Programming

Code for paper Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data Programming (VLDB 2023)

Environment Setup

python3 -m venv nemo_venv
source nemo_venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt
pip uninstall -y nvidia_cublas_cu11

Download Data

gdown 1C48r6FCw-hU6ACbO9BMIgdtHkJn6AMB2
unzip nemo_data.zip && rm nemo_data.zip

Example Command Usages

Under directory src/:

  • Snorkel (select by random):
    python interactive_dp.py  --dataset AmazonReview  --label-model snorkel --soft-training --query-method random
    
  • Snorkel-Abs (select by abstain):
    python interactive_dp.py  --dataset AmazonReview  --label-model snorkel --soft-training --query-method abstain
    
  • Snorkel-Dis (select by disagreement):
    python interactive_dp.py  --dataset AmazonReview  --label-model snorkel --soft-training --query-method disagreement
    
  • Nemo:
    python interactive_dp.py  --dataset AmazonReview  --label-model snorkel --soft-training --query-method uncertainty_lm --seu --aggregate weighted --discard grid
    

Cite

If you find this repository useful, please consider citing:

@article{hsieh2022nemo,
  title={Nemo: Guiding and contextualizing weak supervision for interactive data programming},
  author={Hsieh, Cheng-Yu and Zhang, Jieyu and Ratner, Alexander},
  journal={arXiv preprint arXiv:2203.01382},
  year={2022}
}

About

Guiding and Contextualizing Weak Supervision for Interactive Data Programming

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages