-
Notifications
You must be signed in to change notification settings - Fork 0
/
torque_train.py
154 lines (117 loc) · 4.42 KB
/
torque_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import torch
from torch.utils.data import DataLoader
from lbipe.models import TorqueModel
from lbipe.losses import loss_fn_tau
from lbipe.utils import pack_cut, generate_torque_dataset
best_vloss_torque = 100000
def torque_train_loop(dataloader, model, optimizer):
print('<train_loop>')
size = len(dataloader.dataset)
num_batches = len(dataloader)
train_loss = 0
for batch, (X, y) in enumerate(dataloader):
pred = model(X)
loss = loss_fn_tau(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
train_loss /= num_batches
print(f"Avg loss: {train_loss:>8f}")
def torque_val_loop(dataloader, model, file_torque):
global best_vloss_torque
print('<val_loop>')
num_batches = len(dataloader)
val_loss = 0
with torch.no_grad():
for X, y in dataloader:
pred = model(X)
val_loss += loss_fn_tau(pred, y).item()
val_loss /= num_batches
print(f"Avg loss: {val_loss:>8f}")
if val_loss < best_vloss_torque:
best_vloss_torque = val_loss
print('Save torque model!')
torch.save(model.state_dict(), file_torque)
model.load_state_dict(torch.load(file_torque))
def torque_model_train(class_torque, file_torque, learning_rate, batch_size, epoches):
# load and cut
train_0g = np.load('data/data_train_0g.npz')
train_50g = np.load('data/data_train_50g.npz')
train_100g = np.load('data/data_train_100g.npz')
train_150g = np.load('data/data_train_150g.npz')
train_random_0g = np.load('data/data_train_random_0g.npz')
train_random_50g = np.load('data/data_train_random_50g.npz')
train_random_100g = np.load('data/data_train_random_100g.npz')
train_random_150g = np.load('data/data_train_random_150g.npz')
train_rd_0g = pack_cut(train_random_0g, np.arange(0, 9000))
train_rd_50g = pack_cut(train_random_50g, np.arange(0, 9000))
train_rd_100g = pack_cut(train_random_100g, np.arange(0, 9000))
train_rd_150g = pack_cut(train_random_150g, np.arange(0, 9000))
val_0g = pack_cut(train_random_0g, np.arange(9000, 10000))
val_50g = pack_cut(train_random_50g, np.arange(9000, 10000))
val_100g = pack_cut(train_random_100g, np.arange(9000, 10000))
val_150g = pack_cut(train_random_150g, np.arange(9000, 10000))
# data
train_data_0g = train_0g['joint_data']
train_data_50g = train_50g['joint_data']
train_data_100g = train_100g['joint_data']
train_data_150g = train_150g['joint_data']
train_rd_data_0g = train_rd_0g['joint_data']
train_rd_data_50g = train_rd_50g['joint_data']
train_rd_data_100g = train_rd_100g['joint_data']
train_rd_data_150g = train_rd_150g['joint_data']
train_data = np.concatenate(
[
train_data_0g,
train_data_50g,
train_data_100g,
train_data_150g,
train_rd_data_0g,
train_rd_data_50g,
train_rd_data_100g,
train_rd_data_150g
],
axis=0
)
val_data_0g = val_0g['joint_data']
val_data_50g = val_50g['joint_data']
val_data_100g = val_100g['joint_data']
val_data_150g = val_150g['joint_data']
val_data = np.concatenate(
[
val_data_0g,
val_data_50g,
val_data_100g,
val_data_150g
],
axis=0
)
# dataset
train_dataset = generate_torque_dataset(train_data)
val_dataset = generate_torque_dataset(val_data)
# dataloader
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True)
# train
torque_model = class_torque()
optimizer = torch.optim.Adam(torque_model.parameters(), lr=learning_rate)
for t in range(epoches):
print(f"\nEpoch {t + 1}\n-------------------------------")
torque_train_loop(train_dataloader, torque_model, optimizer)
torque_val_loop(val_dataloader, torque_model, file_torque)
print('Done!')
def main():
torque_model_train(
class_torque=TorqueModel,
file_torque='dicts/dict_torque_new.pt',
learning_rate=3e-4,
batch_size=256,
epoches=300
)
if __name__ == '__main__':
main()