Skip to content

PyTorch implementation of Vanilla PG, TNPG, TRPO, PPO on Mujoco environment

Notifications You must be signed in to change notification settings

ClarenceYC/MuJoCo-PyTorch

 
 

Repository files navigation

pytorch-trpo

PyTorch implementation of Vanilla Policy Gradient, Truncated Natural Policy Gradient, Trust Region Policy Optimization, Proximal Policy Optimization.

Analysis of workability of the system is in Report_PPO_Humanoid.pdf file.

Train

  • algorithm: PG, NPG, TRPO, PPO
  • env: Ant-v2, HalfCheetah-v2, Hopper-v2, Humanoid-v2, HumanoidStandup-v2, InvertedPendulum-v2, Reacher-v2, Swimmer-v2, Walker2d-v2
  • The system trains a Humanoid-v2 env using the PPO algorithm by default. If you wanna specify other envs and algs use:
python main.py --algorithm "algorithm name" --env "environment name"

Reference

This code is modified version of codes

About

PyTorch implementation of Vanilla PG, TNPG, TRPO, PPO on Mujoco environment

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%