Skip to content

Commit

Permalink
Improve matmul schedule for adreno
Browse files Browse the repository at this point in the history
Improved matmul schedule with layout transpose approach, which improves
as follows -
----Model-------prefill baseline ---------prefill optimized
--Llama-2-7b-------51 tok/sec --------------86 tok/sec
--Llama-3-8b-------48 tok/sec --------------79 tok/sec
--gemma-2b -------140 tok/sec -------------245 tok/sec

---------

Co-authored-by: krishnaraj36 <quic_kvegiraj@quicinc.com>
  • Loading branch information
srkreddy1238 and krishnaraj36 committed Sep 30, 2024
1 parent f668262 commit e336aa8
Show file tree
Hide file tree
Showing 2 changed files with 178 additions and 126 deletions.
108 changes: 61 additions & 47 deletions python/tvm/dlight/gpu/matmul.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
from tvm.tir import IterVar, PrimExpr, Var
from tvm.tir.analysis import undefined_vars
from tvm.tir.schedule.schedule import BlockRV
from tvm.script import tir as T

from ..base import analysis, BlockInfo, IterInfo
from .base import GPUScheduleRule
Expand Down Expand Up @@ -942,14 +943,14 @@ def get_configs(self, target: Target) -> Config:
):
return Matmul.Config(
block_size_x=32,
block_size_y=8,
block_size_y=4,
vthread_x=1,
vthread_y=1,
micro_size_x=8,
micro_size_y=2,
micro_size_k=16,
vector_size=8,
unroll=4,
unroll=16,
use_shared=False,
storage_align=False,
inner_x=True,
Expand Down Expand Up @@ -1144,7 +1145,7 @@ def get_max_factor(n, factors):
if not (
isinstance(sch.get(n).extent, tir.IntImm)
and isinstance(sch.get(mb).extent, tir.IntImm)
and isinstance(sch.get(ms).extent, tir.Var)
and not isinstance(sch.get(ms).extent, tir.IntImm)
):
return None

Expand All @@ -1154,6 +1155,7 @@ def get_max_factor(n, factors):
config.vector_size,
config.unroll,
)

VecSize = min(get_max_factor(sch.get(n).extent // Threads_X, [1, 2, 4, 8]), VecSize)
dequant_block = None
matmul_block = reduction_block
Expand All @@ -1166,61 +1168,73 @@ def get_max_factor(n, factors):
elif blk is not matmul_block:
sch.compute_inline(blk)

m = sch.fuse(mb, ms)

sch.pad_einsum(matmul_block, [1, Threads_Y * Unroll_M, Threads_X * VecSize, 1])

rmat_block, wmat_block = (
block = sch.reindex(reduction_block, ("read", 0))
sch.pad_einsum(reduction_block, [1, Unroll_M, 1, 1])
sch.compute_inline(block)
trans_block, matmul_reindex = (
sch.get_producers(matmul_block)[0],
sch.get_consumers(matmul_block)[0],
)
mo, mi, mu = sch.split(m, [None, Threads_Y, Unroll_M])
no, ni, nv = sch.split(n, [None, Threads_X, VecSize])
k0, k1, k2, k3 = sch.split(k, [None, (Threads_X * VecSize) // 32, 4, 8])
sch.reorder(no, mo, ni, mi, k0, k1, k2, k3, mu, nv)

sch.compute_at(rmat_block, k0)
if dequant_block is not None:
sch.compute_at(dequant_block, k3)
sch.reverse_compute_at(wmat_block, mi)
sch.set_scope(rmat_block, 0, "shared")
sch.set_scope(matmul_block, 0, "local")
if epilogue_block is not None:
sch.compute_inline(matmul_reindex)
matmul_reindex = epilogue_block

if dequant_block is not None:
sch.set_scope(dequant_block, 0, "local")
sch.transform_layout(
trans_block,
("write", 0),
T.index_map(lambda i0, i1, i2: (i0, i1 // Unroll_M, i2, i1 % Unroll_M)),
)

sch.bind(mo, "blockIdx.y")
sch.bind(no, "blockIdx.x")
sch.bind(mi, "threadIdx.y")
sch.bind(ni, "threadIdx.x")
sch.vectorize(sch.get_loops(matmul_block)[-1])
# transpose block schedules
# sch.set_scope(trans_block, 0, "global.texture-1d")
tb, tn, tk = sch.get_loops(trans_block)
tbx, ttx = sch.split(tk, [None, Threads_X])
tby, tty, tc = sch.split(tn, [None, Threads_Y, Unroll_M])
sch.bind(tb, "blockIdx.z")
sch.bind(tby, "blockIdx.y")
sch.bind(tbx, "blockIdx.x")
sch.bind(tty, "threadIdx.y")
sch.bind(ttx, "threadIdx.x")
sch.reorder(tb, tby, tbx, tty, ttx, tc)
sch.vectorize(tc)

mb, ms, n, k = sch.get_loops(matmul_block)
m = sch.fuse(mb, ms)
bx, tx, vec = sch.split(n, [None, Threads_X, VecSize])
by, ty, unr = sch.split(m, [None, Threads_Y, Unroll_M])
k1, k2, k3 = sch.split(k, [None, 4, 8])
sch.reorder(bx, by, tx, ty, k1, k2, k3, unr, vec)
sch.set_scope(matmul_block, 0, "local")
if dequant_block is not None:
sch.vectorize(sch.get_loops(dequant_block)[-1])
sch.compute_at(dequant_block, k3)
sch.set_scope(dequant_block, 0, "local")
sch.bind(by, "blockIdx.y")
sch.bind(bx, "blockIdx.x")
sch.bind(ty, "threadIdx.y")
sch.bind(tx, "threadIdx.x")
sch.vectorize(vec)

# Co-operative Memory Fetch
ro, rv = sch.split(sch.get_loops(rmat_block)[-1], [None, VecSize])
sch.bind(ro, "threadIdx.x")
sch.vectorize(rv)
inp = sch.cache_read(matmul_block, read_buffer_index=0, storage_scope="local")
sch.compute_at(inp, k3, preserve_unit_loops=True)
sch.vectorize(sch.get_loops(inp)[-1])

wv = sch.get_loops(wmat_block)[-1]
sch.vectorize(wv)
sch.unroll(unr)
sch.unroll(k3)

# Scale and Quant Cache
if dequant_block is not None:
qb = sch.cache_read(dequant_block, 0, "local")
sb = sch.cache_read(dequant_block, 1, "local")
sch.compute_at(sb, k1)
sch.compute_at(qb, k2)
sch.set_scope(sb, 0, "local")
sch.set_scope(qb, 0, "local")
sch.vectorize(sch.get_loops(qb)[-1])
sch.vectorize(sch.get_loops(sb)[-1])
Aq_local = sch.cache_read(dequant_block, read_buffer_index=0, storage_scope="local")
sch.compute_at(Aq_local, k2, preserve_unit_loops=True)
sch.vectorize(sch.get_loops(Aq_local)[-1])
As_local = sch.cache_read(dequant_block, read_buffer_index=1, storage_scope="local")
sch.compute_at(As_local, k1, preserve_unit_loops=True)
sch.vectorize(sch.get_loops(As_local)[-1])
sch.vectorize(sch.get_loops(dequant_block)[-1])

if epilogue_block is not None:
sch.reverse_compute_at(epilogue_block, mi, preserve_unit_loops=True)
sch.set_scope(wmat_block, 0, "local")
sch.compute_inline(wmat_block)
sch.vectorize(sch.get_loops(epilogue_block)[-1])
sch.reverse_compute_at(matmul_reindex, ty)
o_ur, o_vec = sch.get_loops(matmul_reindex)[-2:]
sch.vectorize(o_vec)
sch.unroll(o_ur)
sch.decompose_reduction(matmul_block, k1)

sch.decompose_reduction(matmul_block, k0)
return sch
Loading

0 comments on commit e336aa8

Please sign in to comment.