-
Notifications
You must be signed in to change notification settings - Fork 69
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fuzzing for sep-CMA-ES #105
Conversation
Tuning LightGBM for Kaggle Toxic Challenge (Surrogate)
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: wscmaes-toxic-target with warm starting
SolversID: 1388a6de65200d045a60b5a1d1913437b57ea1d2a9eb6e07656e13729503bdeerecipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.8.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: ef6eefd4e69f619390fab64533530b7badd4391fc6709167a0d7144c94df45d4recipe: {
"name": "ws-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"ws-cmaes",
"--warm-starting-trials",
"100"
]
}
} specification: {
"name": "ws-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.8.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 4b8c2bfbea634e8b32601e81057749fa9185971643acf6d1cf36906867e163cerecipe: {
"warm_starting": {
"source": {
"surrogate": {
"model": "./toxic-lightgbm-warm-start/wscmaes-toxic-source/"
}
},
"target": {
"surrogate": {
"model": "./toxic-lightgbm-warm-start/wscmaes-toxic-target/"
}
}
}
} specification: {
"name": "wscmaes-toxic-target with warm starting",
"attrs": {},
"params_domain": [
{
"name": "bagging_fraction",
"range": {
"type": "CONTINUOUS",
"low": 0.1,
"high": 0.9
},
"distribution": "UNIFORM"
},
{
"name": "feature_fraction",
"range": {
"type": "CONTINUOUS",
"low": 0.1,
"high": 0.9
},
"distribution": "UNIFORM"
},
{
"name": "lambda_l1",
"range": {
"type": "CONTINUOUS",
"low": 0.1,
"high": 10.0
},
"distribution": "LOG_UNIFORM"
},
{
"name": "lambda_l2",
"range": {
"type": "CONTINUOUS",
"low": 0.1,
"high": 10.0
},
"distribution": "LOG_UNIFORM"
},
{
"name": "learning_rate",
"range": {
"type": "CONTINUOUS",
"low": 0.001,
"high": 1.0
},
"distribution": "LOG_UNIFORM"
},
{
"name": "num_leaves",
"range": {
"type": "DISCRETE",
"low": 8,
"high": 129
},
"distribution": "UNIFORM"
}
],
"values_domain": [
{
"name": "value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM"
}
],
"steps": [
0,
1
]
} StudiesID: 69024f37aa0af2fe15a01e67fa10ab7ecff875a5ffa8e75e2bea7f6fdb1e32bb
ID: ccbbaa37867579491ed3bb37921689f8e429cda0d133b064397e28a0e5c0ac52
|
Benchmark of Six-Hump Camel function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Six-Hump Camel Function
SolversID: a939db22692860645c92c8d357743db4cecbd97108212d5bc1d04b594aa830a9recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.2.1"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: 1388a6de65200d045a60b5a1d1913437b57ea1d2a9eb6e07656e13729503bdeerecipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.8.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: e826da9b1a6e098f9b9d3ab4aeb3ed55546b179e8a3cf7bc59493c7a37cc15d7recipe: {
"name": "pycma",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"pycma"
]
}
} specification: {
"name": "pycma",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.8.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: f93f4880bcd7c97253921a95feff5726f9224363eae3684d639511f4a77a436erecipe: {
"name": "sep-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"sep-cmaes"
]
}
} specification: {
"name": "sep-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.8.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 2c63bdd44db7d921185285d58afb2eae15d3eb87414c3923a59bde0c615175derecipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_six_hump_camel.py"
]
}
} specification: {
"name": "Six-Hump Camel Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM"
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM"
}
],
"values_domain": [
{
"name": "Six-Hump Camel",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM"
}
],
"steps": 1
} StudiesID: 937df77d401862d742f5cfd9ae768c94307c01a1898d4665f8fcc55b00fd958f
ID: 221cde865b208c8d7e515b243219fd596396c4c4167d8b0ff8e97d9baaa7183f
ID: 5f6f4881d6c431d88acd8aab8e11cc8e7591e25b97d13a24512fde0437dff095
ID: 9210a1c5d00ae58fbde9c72038de4359f818639d62c3f18eff07d8b011504e34
|
Benchmark of Rastrigin function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Rastrigin (dim=2)
SolversID: a939db22692860645c92c8d357743db4cecbd97108212d5bc1d04b594aa830a9recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.2.1"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: 1388a6de65200d045a60b5a1d1913437b57ea1d2a9eb6e07656e13729503bdeerecipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.8.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: 5a57a82da232a4ce528dd9a9b6511d01feb022bd94e873b585213e78e61d4bc0recipe: {
"name": "ipop-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"ipop-cmaes"
]
}
} specification: {
"name": "ipop-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.8.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: abc48ac81d021098a930e7f7cb2dcc3d8b67a846c88ff1f991f90f881bd34e51recipe: {
"name": "ipop-sep-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"ipop-sep-cmaes"
]
}
} specification: {
"name": "ipop-sep-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.8.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: f93f4880bcd7c97253921a95feff5726f9224363eae3684d639511f4a77a436erecipe: {
"name": "sep-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"sep-cmaes"
]
}
} specification: {
"name": "sep-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.8.0.dev0, kurobako-py=0.1.12"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 313e939a7e591d92e5be006977daa358d2be4730efd89f70732984f4edb495e4recipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_rastrigin.py",
"2"
]
}
} specification: {
"name": "Rastrigin (dim=2)",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 5.12
},
"distribution": "UNIFORM"
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 5.12
},
"distribution": "UNIFORM"
}
],
"values_domain": [
{
"name": "Rastrigin",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM"
}
],
"steps": 1
} StudiesID: c785cfe8e5f2ad8fd010b3efeead86ae7378974fbc42ce7ceae0688fe486c813
ID: c07d8181cf55ecd92131bbd9241cf925a045b28d861fc6a3ae9b45314f732a03
ID: 9ae8d021c54d33ef43b0e38f98ac3a38333b1415bb6f0ac030aadc2c595639c5
ID: d6ab63ab5f33e13302f45ca28ee9294be403819cbbe3672f243cb8dc5b2a43dc
ID: 006e847a4161a177605eb5069a7eb6a50778b87e2a5bf932590ecbf01ff3e6f3
|
refs #104