-
Notifications
You must be signed in to change notification settings - Fork 69
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Refactor constants definition #85
Conversation
Benchmark of Six-Hump Camel function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Six-Hump Camel Function
SolversID: adba9490e43fe66d939f067852b174c90815eb5f7d736b45282d07bd324579d4recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.2.0"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: c7777d227fa50c528488b4e6ecf537645442f079d03ea21d950f781998063d41recipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.3.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 8dc7ee97c31472d10ffe598a54aaf9f294853af9b88bc7bdfab42caf69f32990recipe: {
"name": "pycma",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"pycma"
]
}
} specification: {
"name": "pycma",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.3.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: ccf3028ab5a2b7021af83a9dea79822a5ffab2df0dd6be4a911af2eb51a3d6d8recipe: {
"name": "sep-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"sep-cmaes"
]
}
} specification: {
"name": "sep-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.3.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ProblemsID: 6467a2061b1fa5c028c60874a64fabe9c1b0ab7d776af0da0df6cfb4dfd02ba8recipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_six_hump_camel.py"
]
}
} specification: {
"name": "Six-Hump Camel Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Six-Hump Camel",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: dc79d0d48060e98c17898b92f060ed68fa679cd629d89a78da642c88bf3d4091
ID: 28854888427397b293bda486b10e17e017be24578ab9319347e7dd022f92a59f
ID: 05dde2ca86149df42349d19c23f1d7d9eb1c38731f1249c925c3dca45dfcf83d
ID: 9cc7feb3dcd1bef4dfef863f26bd42cea5d7c159b679df37af54a7065be0d04e
|
Benchmark of Rastrigin function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Rastrigin (dim=2)
SolversID: adba9490e43fe66d939f067852b174c90815eb5f7d736b45282d07bd324579d4recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.2.0"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: c7777d227fa50c528488b4e6ecf537645442f079d03ea21d950f781998063d41recipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.3.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 11fa479af683ab4e806598ccb939912151efc3b946ddc5a21f21fcc87798396crecipe: {
"name": "ipop-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"ipop-cmaes"
]
}
} specification: {
"name": "ipop-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.3.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: b3cc05e78949fecc693aabbd8efbde389a7b27e005c02428b15cfc054f930943recipe: {
"name": "ipop-sep-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"ipop-sep-cmaes"
]
}
} specification: {
"name": "ipop-sep-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.3.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: ccf3028ab5a2b7021af83a9dea79822a5ffab2df0dd6be4a911af2eb51a3d6d8recipe: {
"name": "sep-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"sep-cmaes"
]
}
} specification: {
"name": "sep-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.3.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ProblemsID: ff691b25f0d05f9eb9d7bbb633075253f1a3cbbc24e9558e8ac9b8126882a326recipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_rastrigin.py",
"2"
]
}
} specification: {
"name": "Rastrigin (dim=2)",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Rastrigin",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: 5118943d4271e745a6a6193ae884ca79ec0862b890c7b5fba550476a3df6f70a
ID: dc3f1d6b8d5954d079132e03e58cca4d3ac383739bb917cba58378a3dda26418
ID: 321e2062474131d946d288ea4709fcd5ea9ffcf24d4c13c5b80c421ce126d2b7
ID: 6eb8f4ef44d78a94da999cca3a9a1ae987e2d14a7d8028fad009550afd524c15
ID: 7e2a913a75a94b59a5365fd541767357f76c9dff11b9f3588cd58d2713ef29a0
|
_EPS
as a module global variable instead of instance variable._FLT_MAX
instead ofsys.float_info.max
because 1e32 is enough.