-
Notifications
You must be signed in to change notification settings - Fork 69
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Fix dimensions of Warm starting CMA-ES #98
Conversation
Benchmark of Six-Hump Camel function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Six-Hump Camel Function
SolversID: adba9490e43fe66d939f067852b174c90815eb5f7d736b45282d07bd324579d4recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.2.0"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: b2a339c8c86f5a3004528633a6a7b7181a7942c167b847a7695c5cffa2a1f32drecipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.6.0.dev0, kurobako-py=0.1.9"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: 39bc9da0bd1de93a0ff3ac66c3c066a8373f86fc7defb1eb744c5acb88f700earecipe: {
"name": "pycma",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"pycma"
]
}
} specification: {
"name": "pycma",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.6.0.dev0, kurobako-py=0.1.9"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: 02c97960d6e708b3fa4359e2594042564bf54ce72a351d9956a7f0b3da7d6970recipe: {
"name": "sep-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"sep-cmaes"
]
}
} specification: {
"name": "sep-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.6.0.dev0, kurobako-py=0.1.9"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 5769b3adfa0de72663fca388a0968622a3d3e268a876cda34270c7cc10898254recipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_six_hump_camel.py"
]
}
} specification: {
"name": "Six-Hump Camel Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Six-Hump Camel",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1,
"reference_point": null
} StudiesID: 1c1c73e73172104744f6ce9c41fd2f29623862f54eb32dc121defc2d4da558d8
ID: 4151163d714650db2579699be1bd9e5efb62f93ed68d58ccbdf50d40b7fd2ea0
ID: c7daa80a05374fb9bf75c5d8144d70a87af4f728d404ca16971bbaf2eaab3d3a
ID: d4140fa68ef12667353e1b3da5f023c5e5c52762a2377bbf07899ca36aa0332a
|
Benchmark of Rastrigin function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Rastrigin (dim=2)
SolversID: adba9490e43fe66d939f067852b174c90815eb5f7d736b45282d07bd324579d4recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.2.0"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: b2a339c8c86f5a3004528633a6a7b7181a7942c167b847a7695c5cffa2a1f32drecipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.6.0.dev0, kurobako-py=0.1.9"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: 7d78449387eca11639d0147d938c071c0471270917c6a945c83c2adb6a5f4678recipe: {
"name": "ipop-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"ipop-cmaes"
]
}
} specification: {
"name": "ipop-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.6.0.dev0, kurobako-py=0.1.9"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: d573b1ed7db9bd4385f51bbcf3c2117b97e31ca341f55f5df068ee9e0d3aa16drecipe: {
"name": "ipop-sep-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"ipop-sep-cmaes"
]
}
} specification: {
"name": "ipop-sep-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.6.0.dev0, kurobako-py=0.1.9"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: 02c97960d6e708b3fa4359e2594042564bf54ce72a351d9956a7f0b3da7d6970recipe: {
"name": "sep-cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"sep-cmaes"
]
}
} specification: {
"name": "sep-cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.6.0.dev0, kurobako-py=0.1.9"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: f7401d817c92517b8a9513f31de65be8bada24717215e8bf3c844b12911b569brecipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_rastrigin.py",
"2"
]
}
} specification: {
"name": "Rastrigin (dim=2)",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Rastrigin",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1,
"reference_point": null
} StudiesID: f6c55bb604503521061db9435a057025ba3d21378eb5d3ceb7eec3305af1d0b6
ID: 95cd4825e594a3c699c48c94ea352da85200b8ab2022f6b721d774f38841c128
ID: 901b247df4364a2e87e2d26798b420734c908aa7e2822316a7caaebbf057d4d3
ID: ab7cb49ca5d7bfe3dce6dee526c7a73d42fe72fd1690f1c58ec0e25877a914b2
ID: 8474adcd396e9e1ed3729771ad1ced4a605725148a03caf7ebbbe701172c479d
|
Fix #97.