Figure.1 Render instance annoatation, RGB image and depth
- Render annotations for semantic segmentation, instance segmentation and panoptic segmentation
- Generate 6DoF pose ground truth
- Render depth ground truth
- Pre-defined domain randomization:
- Light and background, automatic download from HDRI Haven
- Distractors from ShapeNet (e.g. vase, painting, pallet in Figure.1)
- Textures from Texture Haven
- Easy installation and demo running
- Docker support:
docker run -v /tmp:/tmp diyer22/bpycv
(see Dockerfile) - A Python Codebase for building synthetic datasets (see example/ycb_demo.py)
- Conversion to Cityscapes annotation format
- Easy development and debugging due to:
- No complicated packaging
- Use of Blender's native API and calling methods
News: We win 🥈2nd place in IROS 2020 Open Cloud Robot Table Organization Challenge (OCRTOC)
bpycv
support Blender 2.9, 3.0, 3.1+
-
Download and install Blender here.
-
Open Blender dir in terminal and run install script:
# For Windows user: ensure powershell has administrator permission
# Ensure pip: equl to /blender-path/3.xx/python/bin/python3.10 -m ensurepip
./blender -b --python-expr "from subprocess import sys,call;call([sys.executable,'-m','ensurepip'])"
# Update pip toolchain
./blender -b --python-expr "from subprocess import sys,call;call([sys.executable]+'-m pip install -U pip setuptools wheel'.split())"
# pip install bpycv
./blender -b --python-expr "from subprocess import sys,call;call([sys.executable]+'-m pip install -U bpycv'.split())"
# Check bpycv ready
./blender -b -E CYCLES --python-expr "import bpycv,cv2;d=bpycv.render_data();bpycv.tree(d);cv2.imwrite('/tmp/try_bpycv_vis(inst-rgb-depth).jpg', d.vis()[...,::-1])"
Copy-paste this code to Scripting/Text Editor
and click Run Script
button(or Alt+P
)
import cv2
import bpy
import bpycv
import random
import numpy as np
# remove all MESH objects
[bpy.data.objects.remove(obj) for obj in bpy.data.objects if obj.type == "MESH"]
for index in range(1, 20):
# create cube and sphere as instance at random location
location = [random.uniform(-2, 2) for _ in range(3)]
if index % 2:
bpy.ops.mesh.primitive_cube_add(size=0.5, location=location)
categories_id = 1
else:
bpy.ops.mesh.primitive_uv_sphere_add(radius=0.5, location=location)
categories_id = 2
obj = bpy.context.active_object
# set each instance a unique inst_id, which is used to generate instance annotation.
obj["inst_id"] = categories_id * 1000 + index
# render image, instance annoatation and depth in one line code
result = bpycv.render_data()
# result["ycb_meta"] is 6d pose GT
# save result
cv2.imwrite(
"demo-rgb.jpg", result["image"][..., ::-1]
) # transfer RGB image to opencv's BGR
# save instance map as 16 bit png
cv2.imwrite("demo-inst.png", np.uint16(result["inst"]))
# the value of each pixel represents the inst_id of the object
# convert depth units from meters to millimeters
depth_in_mm = result["depth"] * 1000
cv2.imwrite("demo-depth.png", np.uint16(depth_in_mm)) # save as 16bit png
# visualization instance mask, RGB, depth for human
cv2.imwrite("demo-vis(inst_rgb_depth).jpg", result.vis()[..., ::-1])
Open ./demo-vis(inst_rgb_depth).jpg
:
mkdir ycb_demo
cd ycb_demo/
# prepare code and example data
git clone https://github.com/DIYer22/bpycv
git clone https://github.com/DIYer22/bpycv_example_data
cd bpycv/example/
blender -b -P ycb_demo.py
cd dataset/vis/
ls . # visualize result here
# 0.jpg
Open visualize result ycb_demo/bpycv/example/dataset/vis/0.jpg
:
instance_map | RGB | depth
example/ycb_demo.py Inculding:
- Domain randomization for background, light and distractor (from ShapeNet)
- Codebase for building synthetic datasets base on YCB dataset
Generate and visualize 6DoF pose GT: example/6d_pose_demo.py
Blender may can't direct load
.obj
or.dea
file from YCB and ShapeNet dataset.
It's better to transefer and format usingmeshlabserver
by runmeshlabserver -i raw.obj -o for_blender.obj -m wt
suggestion and pull request are welcome 😊