Skip to content

DabinJeong/ML_biomarker

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ML_biomarker

Implementation of machine-learning based biomarker discovery tool. workflow Original manuscript available here.

Installation

conda create -n ML_biomarker python=3.9.13
conda activate ML_biomarker

conda update -n base -c defaults conda
pip install --upgrade pip

Install requirements and dependencies via:

pip install -r requirements.txt

Biomarker discovery

  • Input: data (Sample X feature matrix in tsv format), label (Sample X 2 matrix in tsv format), data_split (Sample X 3 matrix in tsv format)
  • Output: Number of selected features, Selected genes (i.e. biomarker candidate), Max accuracy in recursive feature addition, Predicted label in test set, True label in test set
python bin/recursive_feature_addition.py -data data/Asthma/MS_LFQ.tsv -label data/Asthma/patient_label.tsv -data_split data_split/Asthma_CV_1.tsv -outDir result_Asthma_CV_1

Citation

@article{koh2024identification,
  title={Identification of VWA5A as a novel biomarker for inhibiting metastasis in breast cancer by machine-learning based protein prioritization},
  author={Koh, Jiwon and Jeong, Dabin and Park, Soo Young and Han, Dohyun and Kim, Da Sol and Kim, Ha Yeon and Kim, Hyeyoon and Yang, Sohyeon and Kim, Sun and Ryu, Han Suk},
  journal={Scientific Reports},
  volume={14},
  number={1},
  pages={2459},
  year={2024},
  publisher={Nature Publishing Group UK London}
}

About

Machine-learning based biomarker discovery tool

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages