-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
ad4fff7
commit 1bc8652
Showing
5 changed files
with
315 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
library(usmap) | ||
library(ggplot2) | ||
library(extrafont) | ||
|
||
# Create a data frame with state names and average retirement age | ||
retirement_data <- data.frame( | ||
state = c("District of Columbia", "Hawaii", "Massachusetts", "South Dakota", "Maryland", "Connecticut", "New Jersey", "Vermont", "Rhode Island", "New Hampshire", | ||
"Colorado", "Virginia", "North Dakota", "Minnesota", "Utah", "Nebraska", "Iowa", "Texas", "Kansas", "California", | ||
"New York", "Washington", "Pennsylvania", "Wisconsin", "Florida", "Montana", "Illinois", "Idaho", "Wyoming", "Tennessee", | ||
"Oregon", "Maine", "Nevada", "Delaware", "Arizona", "North Carolina", "South Carolina", "Ohio", "Indiana", "Missouri", "Georgia", "Mississippi", | ||
"Louisiana", "New Mexico", "Michigan", "Kentucky", "Alabama", "Oklahoma", "Arkansas", "Alaska", "West Virginia"), | ||
values = c(67, 66, 66, 66, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, | ||
63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 61, 61) | ||
) | ||
|
||
# Your existing code for creating the plot | ||
Retirement_plot <- plot_usmap(data = retirement_data, color = "#0061ff") + | ||
scale_fill_continuous( | ||
low = "#60efff", high = "#0061ff", name = "", label = scales::comma | ||
) + theme(legend.position = "right", | ||
legend.text = element_text(size = 16)) + | ||
labs(title = "Average Retirement Age in Every State") | ||
|
||
# Change the title font | ||
Retirement_plot + theme( | ||
plot.title = element_text(family = "Lucida Sans Unicode", size = 16, face = "bold", hjust = 0.5, vjust = - 10) | ||
) + | ||
annotate(geom = "text", x = 0.5, y = -0.5, label = "Mean: 63.86 and Median: 64", size = 5, hjust = -0.4, vjust = 30) | ||
|
||
ggsave("Retirement_plot.jpg",width = 3840, height = 2160, units = c("px")) | ||
|
||
# Mean and median of the plot: | ||
Median <- median(retirement_data$values) | ||
Median | ||
Mean <- mean(retirement_data$values) | ||
Mean | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
# Load the ggplot2 library | ||
library(ggplot2) | ||
library(extrafont) | ||
# Create a data frame from the provided data | ||
data <- data.frame( | ||
Country = c("Netherlands", "Iceland", "Australia", "New Zealand", "Switzerland", "Norway", "Canada", "Denmark", | ||
"United Kingdom", "Austria", "Germany", "United States", "Ireland", "G7", "Japan", "Finland", | ||
"Sweden", "Israel", "OECD - Total", "Mexico", "Colombia", "Estonia", "Türkiye", "Euro area", | ||
"France", "European Union", "Slovenia", "Luxembourg", "Latvia", "Costa Rica", "Portugal", | ||
"Lithuania", "Poland", "Korea", "Belgium", "Hungary", "Czech Republic", "Russia", "Spain", "Chile", | ||
"Slovak Republic", "Italy", "Greece", "South Africa"), | ||
Employment_Rate = c(77.05, 69.35, 65.18, 62.81, 61.39, 59.04, 57.80, 56.27, 54.38, 53.83, 51.35, 51.28, 48.84, 48.23, 47.85, 47.02, 46.37, | ||
43.84, 43.75, 41.95, 37.45, 37.45, 36.97, 36.51, 35.41, 35.39, 33.08, 30.45, 30.23, 30.02, 29.23, | ||
29.10, 28.18, 27.76, 26.90, 26.50, 25.63, 25.16, 23.78, 23.65, 21.82, 20.30, 18.25, 10.45) | ||
) | ||
|
||
# Highlight "Netherlands" and "Iceland" with different colors | ||
highlighted_countries <- c("Spain", "United States") | ||
data$Highlight <- ifelse(data$Country %in% highlighted_countries, "Highlighted", "Other") | ||
|
||
# Create a ggplot | ||
plot <- ggplot(data, aes(x = reorder(Country, Employment_Rate), y = Employment_Rate, fill = Highlight)) + | ||
geom_bar(stat = "identity") + | ||
labs(x = "Country", y = "Employment Rate") + | ||
ggtitle("Employment Rate by Country (15-24 years-olds)") + | ||
scale_fill_manual(values = c("Highlighted" = c("#d62828"), "Other" = "#003049")) | ||
|
||
# Rotate the x-axis labels for better readability | ||
plot + theme_minimal() + | ||
theme( | ||
text = element_text(family = "Lucida Sans Unicode", size = 12), | ||
legend.position = "none", | ||
axis.text.x = element_text(angle = 45, hjust = 1, size = 12), | ||
axis.title.x = element_text(size = 14), | ||
axis.title.y = element_text(size = 14), | ||
plot.title = element_text(size = 16, hjust = 0.5)) | ||
|
||
ggsave("EmplymentRate.jpg",width = 3840, height = 2160, units = c("px")) | ||
|
||
spain_employment_rate <- data[data$Country == "Spain", "Employment_Rate"] | ||
print(spain_employment_rate) | ||
|
||
usa_employment_rate <- data[data$Country == "United States", "Employment_Rate"] | ||
print(usa_employment_rate) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
library(dplyr) | ||
library(ggplot2) | ||
library(reshape2) | ||
library(extrafont) | ||
|
||
# Importing time_spent and cleaning the data (transforming to hours) | ||
time_spent | ||
time_spent_edited <- time_spent[,-c(1,2)] | ||
colnames(time_spent_edited) <- c("Age","Alone","Friends","Children","Family","Partner","Coworkers") | ||
time_spent_edited <- time_spent_edited %>% | ||
mutate(time_spent_edited[,c(2:7)]/60) | ||
time_spent_edited <- time_spent_edited %>% | ||
mutate(round(time_spent_edited[,c(2:7)],2)) | ||
rownames(time_spent_edited) <- time_spent_edited$Age | ||
View(time_spent_edited) | ||
|
||
# Melting data to form the necessary column names and numbers | ||
time_spent_long <- melt(time_spent_edited, id.vars = "Age", variable.name = "Activity", value.name = "Hours") | ||
|
||
# Define custom colors for each activity (total of 6 colors) | ||
custom_colors <- c("#e03c31", "#f7ea48","#2dc84d", "#90e0ef", "#147bd1", "#FF00FF") | ||
|
||
# Create a faceted plot with custom line colors and modified titles | ||
facet_plot <- ggplot(time_spent_long, aes(x = Age, y = Hours, color = Activity)) + | ||
geom_line(size = 1.75) + | ||
labs(x = "Age", y = "Hours Spent") + | ||
scale_x_continuous(limits = c(15, max(time_spent_long$Age))) + | ||
facet_wrap(~Activity, ncol = 3) + # Display facets in 3 columns | ||
scale_color_manual(values = custom_colors) + # Assign custom colors to each facet | ||
theme_minimal() + | ||
theme( | ||
text = element_text(family = "Lucida Sans Unicode", size = 12), | ||
axis.title = element_text(size = 15), | ||
panel.background = element_rect(fill = "white"), | ||
panel.grid.major = element_line(color = "gray"), | ||
strip.text = element_text(size = 17, color = "black"), | ||
strip.background = element_rect(size=0.8, linetype='solid'), | ||
legend.position = "none" # Remove the legend | ||
) | ||
ggsave("Facet_plot.jpg",width = 3840, height = 2160, units = c("px")) | ||
# Print the faceted plot | ||
print(facet_plot) | ||
|
||
#Creating a line graph with each representation of time spend based on age | ||
ggplot(time_spent_long, aes(x = Age, y = Hours, color = Activity)) + | ||
geom_line(size = 1.2) + | ||
scale_color_manual(values = custom_colors) + | ||
labs(x = "Age", y = "Hours Spent") + | ||
scale_x_continuous(limits = c(15, max(time_spent_edited$Age))) + | ||
theme_minimal() + | ||
theme( | ||
text = element_text(family = "Lucida Sans Unicode", size = 12), | ||
axis.title = element_text(size = 12), | ||
plot.background = element_rect(fill = "white"), | ||
plot.title = element_text(size = 16, face = "bold", hjust = 0.5) # Center the title horizontally | ||
) + | ||
ggtitle("Time Spent during life") | ||
ggsave("Time_spent.jpg",width = 3840, height = 2160, units = c("px")) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
library(dplyr) | ||
library(ggplot2) | ||
library(reshape2) | ||
library(extrafont) | ||
|
||
#Graphing line plots of each variable in their own graph | ||
ggplot(time_spent_long, aes(x = Age, y = Minutes, color = Activity)) + | ||
geom_line() + | ||
labs(x = "Age", y = "Minutes Spent") + | ||
scale_x_continuous(limits = c(15, max(time_spent_long$Age))) + | ||
facet_wrap(~Activity) | ||
|
||
#Filtering for Alone. Making a table and a graph | ||
Alone_Table <- time_spent_edited %>% | ||
summarize(Age,Alone) | ||
Alone_Table | ||
ggplot(time_spent_edited, aes(x=Age,y=Alone))+ | ||
geom_line(size = 1.5, color = "#e03c31") + | ||
theme_minimal() + | ||
theme( | ||
text = element_text(family = "Lucida Sans Unicode", size = 12), | ||
axis.title = element_text(size = 15, color = "#e03c31"), | ||
legend.position = "none", # Remove the legend | ||
plot.title = element_text(size = 24, color = "#e03c31", hjust = 0.5) # Título grande en el centro | ||
) + | ||
labs( | ||
x = "Age", | ||
y = "Hours Alone", | ||
title = "Time Alone" | ||
) | ||
ggsave("Alone.jpg",width = 3840, height = 2160, units = c("px")) | ||
|
||
#Filtering for With_Friends. Making a table and a graph | ||
Friends_Table <- time_spent_edited %>% | ||
summarize(Age,Friends) | ||
Friends_Table | ||
ggplot(time_spent_edited, aes(x=Age,y=Friends))+ | ||
geom_line(size = 1.5, color = "#f7ea48") + | ||
theme_minimal() + | ||
theme( | ||
text = element_text(family = "Lucida Sans Unicode", size = 12), | ||
axis.title = element_text(size = 15, color = "#f7ea48"), | ||
legend.position = "none", # Remove the legend | ||
plot.title = element_text(size = 24, color = "#f7ea48", hjust = 0.5) # Título grande en el centro | ||
) + | ||
labs( | ||
x = "Age", | ||
y = "Hours with Friends", | ||
title = "Time with Friends" | ||
) | ||
ggsave("Friends.jpg",width = 3840, height = 2160, units = c("px")) | ||
|
||
#Filtering for With_Children. Making a table and a graph | ||
Children_Table <- time_spent_edited %>% | ||
summarize(Age,Children) | ||
Children_Table | ||
ggplot(time_spent_edited, aes(x=Age,y=Children))+ | ||
geom_line(size = 1.5, color = "#2dc84d") + | ||
theme_minimal() + | ||
theme( | ||
text = element_text(family = "Lucida Sans Unicode", size = 12), | ||
axis.title = element_text(size = 15, color = "#2dc84d"), | ||
legend.position = "none", # Remove the legend | ||
plot.title = element_text(size = 24, color = "#2dc84d", hjust = 0.5) # Título grande en el centro | ||
) + | ||
labs( | ||
x = "Age", | ||
y = "Hours with Children", | ||
title = "Time with your Children" | ||
) | ||
ggsave("Children.jpg",width = 3840, height = 2160, units = c("px")) | ||
|
||
mean(time_spent_edited$Children) | ||
median(time_spent_edited$Children) | ||
|
||
#Filtering for With_Immediate_Family. Making a table and a graph | ||
Family_Table <-time_spent_edited %>% | ||
summarize(Age,Family) | ||
Family_Table | ||
ggplot(time_spent_edited, aes(x=Age,y=Family))+ | ||
geom_line() | ||
ggplot(time_spent_edited, aes(x=Age,y=Family))+ | ||
geom_line(size = 1.5, color = "#90e0ef") + | ||
theme_minimal() + | ||
theme( | ||
text = element_text(family = "Lucida Sans Unicode", size = 12), | ||
axis.title = element_text(size = 15, color = "#90e0ef"), | ||
legend.position = "none", # Remove the legend | ||
plot.title = element_text(size = 24, color = "#90e0ef", hjust = 0.5) # Título grande en el centro | ||
) + | ||
labs( | ||
x = "Age", | ||
y = "Hours with Family", | ||
title = "Time with your Family" | ||
) | ||
|
||
ggsave("Family.jpg",width = 3840, height = 2160, units = c("px")) | ||
|
||
#Filtering for With_Partner. Making a table and a graph | ||
Partner_Table <-time_spent_edited %>% | ||
summarize(Age,Partner) | ||
Partner_Table | ||
ggplot(time_spent_edited, aes(x=Age,y=Partner))+ | ||
geom_line() | ||
ggplot(time_spent_edited, aes(x=Age,y=Partner))+ | ||
geom_line(size = 1.5, color = "#147bd1") + | ||
theme_minimal() + | ||
theme( | ||
text = element_text(family = "Lucida Sans Unicode", size = 12), | ||
axis.title = element_text(size = 15, color = "#147bd1"), | ||
legend.position = "none", # Remove the legend | ||
plot.title = element_text(size = 24, color = "#147bd1", hjust = 0.5) # Título grande en el centro | ||
) + | ||
labs( | ||
x = "Age", | ||
y = "Hours with Patner", | ||
title = "Time with your Partner" | ||
) | ||
ggsave("Partner.jpg",width = 3840, height = 2160, units = c("px")) | ||
|
||
#Filtering for Coworker. Making a table and a graph | ||
Partner_Table <-time_spent_edited %>% | ||
summarize(Age,Coworkers) | ||
Partner_Table | ||
ggplot(time_spent_edited, aes(x=Age,y=Coworkers))+ | ||
geom_line() | ||
ggplot(time_spent_edited, aes(x=Age,y=Coworkers))+ | ||
geom_line(size = 1.5, color = "#FF00FF") + | ||
theme_minimal() + | ||
theme( | ||
text = element_text(family = "Lucida Sans Unicode", size = 12), | ||
axis.title = element_text(size = 15, color = "#FF00FF"), | ||
legend.position = "none", # Remove the legend | ||
plot.title = element_text(size = 24, color = "#FF00FF", hjust = 0.5) # Título grande en el centro | ||
) + | ||
labs( | ||
x = "Age", | ||
y = "Hours with Coworkers", | ||
title = "Time with your Coworkers" | ||
) | ||
ggsave("Coworker.jpg",width = 3840, height = 2160, units = c("px")) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
library(ggplot2) | ||
|
||
#Data frame | ||
data <- data.frame( | ||
Year = c(1965, 1975, 1985, 1998), | ||
Married_Fathers = c(17, 17, 26, 51), | ||
Married_Mothers = c(84, 67, 80, 99), | ||
Single_Mothers = c(59, 63, 67, 85) | ||
) | ||
|
||
# Line ggplot | ||
ggplot(data, aes(x = Year)) + | ||
geom_line(aes(y = Married_Fathers, color = "Married Fathers"), size = 1) + | ||
geom_line(aes(y = Married_Mothers, color = "Married Mothers"), size = 1) + | ||
geom_line(aes(y = Single_Mothers, color = "Single Mothers"), size = 1) + | ||
geom_point(aes(y = Married_Fathers, color = "Married Fathers"), size=1.5)+ | ||
geom_point(aes(y = Married_Mothers, color = "Married Mothers"), size = 1.5)+ | ||
geom_point(aes(y = Single_Mothers, color = "Single Mothers"), size =1.5)+ | ||
labs(title = "Child Care Time per day (with children age 18 or under)", | ||
x = "Year", | ||
y = "minutes") + | ||
scale_color_manual( | ||
values = c("Married Fathers" = "#00a6ed", "Married Mothers" = "#f6511d", "Single Mothers" = "#ffb400")) + | ||
theme_minimal() + | ||
theme(legend.title = element_blank(), | ||
plot.title = element_text(size = 20, hjust = 0.5), | ||
legend.text = element_text(size = 18), | ||
axis.title = element_text(size = 16), | ||
axis.text = element_text(size = 12)) | ||
|
||
|
||
ggsave("UsChildCare_plot.jpg",width = 3840, height = 2160, units = c("px")) | ||
|
||
|