Skip to content

This repository is used for integrating the controllers on the robot Qolo, sensors, obstacle avoidance, and high-level controllers with the low-level motor control of the robot.

Notifications You must be signed in to change notification settings

DrDiegoPaez/qolo_ros

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ros Interface for controlling the robot Qolo @LASA

This repository is used for integrating the main controller on the robot Qolo [1], all sensors, obstacle avoidance, and high-level controllers with the low-level motor control of the robot [3].

Package contents:

User Iterface:

  • Embodided control with Hands-free Navigation [2]
  • Joystick remote control with html interface

Controllers:

  • Redirecting Driver Support (RDS): Obstacle Avoidance for non-holonomic robots [P1]
  • Modulated Dynamical Systems based obstacle avoidance [P2]
  • Compliant control [P3]

Communication:

  • ROS controllers for real-robot Qolo.
  • ROS controllers version for the CrowdBot simulator version of Qolo. [P4]

Alt text

Mantainer: Dr. Diego Paez G. Start Date: 2019-01-01

Last Update: 2021-02-15

Prerequisites

Ubnutu 16.04 or 18.04 ROS kinetic / melodic python 2.7 python-pip rds_network_ros # For shared control --> See related package below

For Visualization in RVIZ:

jsk_rviz_plugin * sudo apt-get install -y ros-VERSION-jsk-visualization rwth_messages (for people tracker visualization -- See below in Visualization section)

Installation on the real Qolo:

Install Ubuntu Kernel for Upboard: https://wiki.up-community.org/Ubuntu enablel spi port on UP board https://wiki.up-community.org/Pinout_UP2#SPI_Ports

Enable the HAT functionality from userspace https://wiki.up-community.org/Ubuntu

Install MRAA library: https://github.com/intel-iot-devkit/mraa PYYAML: For FT model

Follow the installation guide: https://github.com/DrDiegoPaez/qolo_ros/blob/master/install_scripts/Install_instructions.txt

Usage Guides:

Qolo overall system guide:

https://github.com/DrDiegoPaez/qolo_ros/blob/master/Guides/Qolo_LASA_Specs.pdf

Launch sequence guide for real Qolo:

https://github.com/DrDiegoPaez/qolo_ros/blob/master/Guides/launch_sequences.txt

Remote Joystick setup and usage:

https://github.com/DrDiegoPaez/qolo_ros/blob/master/Guides/ROS-joystick-guide.txt

General Usage guide for CrowdBot Simulator:

https://github.com/DrDiegoPaez/qolo_ros/blob/master/Guides/launch_sequence-CrowdBotUnity-ROS.txt

Visualization Guide:

Install the packages: {also found online}

visualisation/messages.zip visualisation/spencer_tracking_rviz_plugin.zip

  • Only compatible with ROS-kinetic or ROS-melodic (Ubuntu 16 or 18)

catkin_make of the ros package on your wrokspace source your workspace roslaunch qolo_ros rviz.launch

You can select among different presets for rviz depending on the available data (LIDARs / sensory board / force sensors / people tracker)

Related packages:

[P1] Obstacle avoidance for tight shape and non-holonomic constraints (used in shared control): [3]

https://github.com/epfl-lasa/rds

[P2] Obstacle avoidance based on dynamical systems:

https://github.com/epfl-lasa/qolo_modulation https://github.com/epfl-lasa/dynamic_obstacle_avoidance/

[P3] Pybullet simulation for collisions and compliant control with Qolo and other robots [4]:

https://github.com/epfl-lasa/human-robot-collider

[P4] CrowdBot Simulator Package:

https://gitlab.inria.fr/CrowdBot/CrowdBotUnity

[P5] Qolo 3D model for simulation files:

https://github.com/FabienGrzeskowiakInria/CrowdBot_robots

References:

_Qolo Design _(please cite the latest T-Mech paper):

[1] Paez-Granados, D., Kadone, H., Hassan, M., Chen, Y., & Suzuki, K. (2022). Personal Mobility with Synchronous Trunk-Knee Passive Exoskeleton: Optimizing Human-Robot Energy Transfer. IEEE/ASME Transactions on Mechatronics, (1), 1–12. https://doi.org/10.1109/TMECH.2021.3135453

[1] Paez-Granados, D., Kadone, H., & Suzuki, K. (2018). Unpowered Lower-Body Exoskeleton with Torso Lifting Mechanism for Supporting Sit-to-Stand Transitions. IEEE International Conference on Intelligent Robots and Systems, 2755–2761. https://doi.org/10.1109/IROS.2018.8594199

Qolo Hands-free control:

[2] Chen, Y., Paez-Granados, D., Kadone, H., & Suzuki, K. (2020). Control Interface for Hands-free Navigation of Standing Mobility Vehicles based on Upper-Body Natural Movements. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2020). https://doi.org/10.1109/IROS45743.2020.9340875

Qolo shared control:

[3] Gonon, D. J., Paez-Granados, D., & Billard, A. (2021). Reactive Navigation in Crowds for Non-holonomic Robots with Convex Bounding Shape. IEEE Robotics and Automation Letters, 6(3), 4728–4735. https://doi.org/10.1109/LRA.2021.3068660

[4] Paez-Granados, D., Billard, A., & Suzuki, K. (2020). Materializing Personal Standing Mobility from Design to Shared Control. In ETH Zurich Rehabilitation Engineering Lab (Ed.), CYBATHLON Symposium. Cybathlon. https://cybathlon-symposium.ethz.ch

Crowd Navigation & safety assessment:

[5] Paez-granados, D., Gonon, D., Salvini, P., & Billard, A. (2020). Physical Safety in Collisions Between Robots and Pedestrians. IEEEE International Conference on Robot and Human Interaactive Communication (ROMAN-2020) Workshop on Robots from Pathways to Crowds, 1–2. https://doi.org/10.13140/RG.2.2.28087.55209

[6] Grzeskowiak, F., Gonon, D., Dugas, D., Paez-granados, D., Chung, J. J., Nieto, J., Siegwart, R., Billard, A., Babel, M., & Pettr, J. (2021). Crowd against the machine : A simulation-based benchmark tool to evaluate and compare robot capabilities to navigate a human crowd. IEEE International Conference on Robotics and Automation (ICRA-2021).

Compliant Control:

[7] Paez-Granados, D., Gupta, V., & Billard, A. (2021). Unfreezing Social Navigation : Dynamical Systems based Compliance for Contact Control in Robot Navigation. Robotics Science and Systems (RSS) - Workshop on Social Robot Navigation, 1(1), 1–4.http://infoscience.epfl.ch/record/287442?&ln=en. https://youtu.be/y7D-YeJ0mmg

Contact: [Dr. Diego Paez] https://diegofpaez.wordpress.com/

Acknowledgments This project was partially founded by:

The EU Horizon 2020 Project CROWDBOT (Grant No. 779942): http://crowdbot.eu

The Toyota Mobility Foundation (TMF) through the Grant: Mobility Unlimited Challenge 2019: https://mobilityunlimited.org

Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of (MEXT) Japan: http://www.ai.iit.tsukuba.ac.jp/research/046.html

About

This repository is used for integrating the controllers on the robot Qolo, sensors, obstacle avoidance, and high-level controllers with the low-level motor control of the robot.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •