Metagenomics service is a large-scale platform for analyzing and archiving metagenomic and metatranscriptome data. It provides a standardized analysis workflow, capable of producing rich taxonomic diversity and functional annotations, and allows analysis results to be compared within and across projects on a broad level, and across different data types (e.g. metagenomic and metatranscriptomic).
For development, use the parent repo "MGnify Web" which includes this API repository, as well as the frontend web repository needed to develop/run the MGnify website.
The parent repo uses docker-compose to configure a development environment and test data for the entire stack of the MGnify website. It is the recommended development setup. See: MGnify Web on GitHub for instructions.
The Docker setup is just for local dev. at the moment.
This API relies on a relational (SQLite or MySQL) and a document (Mongo) database.
This docker compose setup in the parent repo handles these.
There are some helper scripts that are meant to make running the project locally easier.
manage.sh
wrapper formanage.py
commands such asrunserver
.gunicorn.sh
run the app using gunicorn with the--reload
flag.
Create/edit configuration file in ./config/<some config>.yaml
and set the env var EMG_CONFIG
to point to that file.
The config file must specify the databases:
emg:
databases:
default:
ENGINE: 'django.db.backends.mysql'
HOST: 'host'
PORT: 3306 (or other)
DB: 'database_name'
NAME: 'schema_name'
USER: 'user'
PASSWORD: 'password'
...
(see the example config yamls for full details).
If not using the mgnify-web docker compose setup for some reason:
Install virtualenv.
Create a virtual environment or a conda env, e.g.: virtualenv -p python3 venv
Activate and install the dependencies source venv/bin/activate && pip install .[dev,admin]
.
Run the migrations: ./manage.sh migrate
Run the server: ./manage.sh runserver 8000
If using the mgnify-web setup, follow the instructions in the parents repo README, and use the Taskfile in it.
TODO: update the following
Install application::
conda create -q -n myenv python=3.6.8
source activate myenv
pip install https://github.com/EBI-Metagenomics/emgapi/archive/$latestTag.tar.gz
Create database::
mysql -e 'CREATE DATABASE emg;'
mysql -u root --password="" --database=emg < travis/biomes.sql
mysql -u root --password="" --database=emg < travis/variable_names.sql
mysql -u root --password="" --database=emg < travis/experiment_type.sql
mysql -u root --password="" --database=emg < travis/analysis_status.sql
Start application (API)::
emgcli check --deploy
emgcli migrate --fake-initial
emgcli collectstatic --noinput
# start application server
# for a TCP configuration use: --bind 127.0.0.1:8000
# for UNIX domain socket use: --bind=unix:$SOCKFILE
emgdeploy --daemon -p ~/emgvar/emg.pid --workers 5 --reload emgcli.wsgi:application
NOTE: ~/emgvar
is used as default directory to store logs, etc.
How to install the webuploader (one off)?
conda create -q -n myenv python=3.6.8
source activate myenv
pip install -U -r https://raw.githubusercontent.com/EBI-Metagenomics/emgapi/webuploader/requirements-webuploader.txt
pip install "git+git://github.com/EBI-Metagenomics/emgapi.git@webuploader"
source activate myenv
cd mycheckoutclone
export PYTHONPATH="${PYTHONPATH}:$(pwd)/emgcli"
export EMG_CONFIG=docker/local-config.yaml
export ENA_API_PASSWORD=?
export ENA_API_USER=?
./manage.sh import_analysis <rootpath>
sync PRO/REL DB to DEV
# Source virtual environment
source activate myenv
# export environment variables
export EMG_CONFIG=docker/dev-config.yaml
cd mycheckoutclone
emgcli migrate --fake-initial
Start containers using::
docker-compose -f docker/docker-compose.yml up --build --abort-on-container-exit
Tests are ran using pytest <https://pytest.org>
_.
Set the env variable EMG_CONFIG
.
To run tests::
python setup.py test
# or the simpler
pytest # will use config/local-tests.yml as the config file
or use the wrapper script (will user docker/contig-test.yml)::
./run-tests.sh
Copyright (c) 2017-2022 EMBL - European Bioinformatics Institute