Skip to content

ENGI9805-COMPUTER-VISION/Term-Project

Repository files navigation

Course Project - ENGI 9805 Computer Vision

A web app for generating photo-realistic Super-Resolution Images/Videos based on SRGAN.

Try the demo.

Due to the hardware limitation of the server, the online version of the appliction can only process images with size smaller than 240 x 240.

If you want to test on larger images, please download the app and run it on your local machine.

screenshot

Installation

Clone the repo

git clone git@github.com:ENGI9805-COMPUTER-VISION/Term-Project.git

cd into the project root folder

cd Term-Project

Create a conda virtual environment

conda create -n srgan_env python=3.6.8

and activate environment

conda activate srgan_env

Then you need to install the project dependencies

pip install -r requirements.txt

Usage

Run the app

streamlit run app.py

Available models

  • netG epoch 100 upscale factor 2
  • netG epoch 100 upscale factor 4
  • netG epoch 100 upscale factor 8

Work Log

  • Build the program
    • Machine learning resource management
    • Data ingestion and collection (Jason)
    • Setup & configure cloud computing environment for GPU training (Jason)
    • Model training (Jason, Luo)
    • Integrating trained model with web app(Ian)
    • Process Single Video (Ian)
    • Add statistic terms definition
    • Fix png file alpha channel error
    • Fix Show Benchmark Datasets error
    • Refactor code and add comments
  • Deploy working demo on Heroku platform
    • Add startup file (Jason)
    • Inject necessary dependencies (Jason)
    • Fix deployment error (Jason)
    • Add Image size check
  • Write project report
    • Choose a suitable template and fine-tune the layout & style (Jason)
    • Abstract (Jason)
    • Introduction (Jason)
    • Problem definition (Luo)
    • Proposed solution (Ian)
    • Results and discussion (Jason & Luo)
    • Conclusion (Ian)
    • Reference (Jason)
    • Proof read (Jason)
  • Write presentation slides
    • Choose a suitable template and fine-tune the layout & style (Jason)
    • Background & Motivation (Jason)
    • Our Solution (Ian)
    • Result (Jason)
    • Demo (Jason)
    • Conclusion & Futrue Work (Jason)
    • References (Jason)
  • Record presentation video
    • Background & Motivation (Jason)
    • Our Solution (Ian)
    • Result (Jason)
    • Demo (Ian)
    • Conclusion & Futrue Work (Jason)
    • References (Jason)
    • Video Editing (Luo)

About

A web app for SRGAN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages