Social
INTERRELATIONSHIPS BETWEEN LAND USE AND LAND COVER (LULC) AND IRREGULAR OCCUPATIONS ON HIGHWAY DOMAIN BANDS: A COMPARATIVE ANALYSIS OF DIFFERENT SPATIAL CONFIGURATIONS
Universidade Federal de Pernambuco - UFPE Center for Technology and Geosciences - CTG Graduate Program in Civil Engineering |
---|
Collaborators:
Erison Rosa de Oliveira Barros (UFPE) https://orcid.org/0000-0003-4879-6880
Maurício de O. Andrade (UFPE) https://orcid.org/0000-0002-7377-7668
Fernando Lourenço de Souza Júnior (UFPE) https://orcid.org/0000-0002-6000-149X
Languages | Database | IDE | Spatial software |
---|---|---|---|
This study aims to assess changes in LULC land use along the BR-104 road corridor located in the rural region of Pernambuco, Brazil, using data from MAPBIOMAS and the Social Vulnerability Index (IVS) for the 2000-period period. 2010 and 2010-2018. The LULC maps were generated from MapBiomas classification data, standardized Social Vulnerability Index (IVS) maps for 2000 and 2010, and images from the PE3D Project, Population Density Data for the year 2000 and 2010. The extent of Spatial landscape changes occurring in different classes of LULC were accomplished through the cross-tabulation change matrix in the Molusce module in QGIS. The results indicate that areas with high population density and housing deficit tend to have a greater possibility of suffering irregular occupations over the domain strip. The conversion of urban and rural areas into lands of irregular occupation on the BR-104 domain strip is closely associated with the increase in human activities due to population density and the higher Social Vulnerability Index – IVS, as well as the variables associated with this index. The modeled LULC maps of irregular occupations over the 2018 right-of-way were cross-validated with the planimetric survey data of the BR-104 right-of-way carried out by DNIT. In order to identify which classes had the greatest changes in the period of analysis, and whether these classes tend to occur in areas classified as highly susceptible to occupation of the highway domain lanes. It was verified in the interval of ten years that there was a loss of 35.64 km² of agricultural area in the studied region, as well as almost 16.60 km² of irregular expansion of the urban area between 2000 and 2010. This last one expanded to places with high susceptibility to irregular occupation of the Strip.(/p>
- Zenodo
- Onedrive
Based on geospatial data on irregular occupations on the right of way in 2018 made available by DNIT-PE, Regional Superintendence of the State of Pernambuco, of highway BR-104 – Stretch PE located in Agreste region of the state of Pernambuco, we raised the main questions about the theme and we investigated whether physical proximity can provide positive or negative effects to this population and the nature of social interactions between residents living on the margins of this highway (Figure 03), trying to understand their behavior in relation to irregular occupations of these domains. The spatial cutout used as a laboratory for the analyzes proposed for this research is located in the rural region of Pernambuco, between Quipapá and Taquaritinga do Norte cities, with about 130 km.
https://www.google.com/maps/d/u/0/edit?mid=1DKN0P84sqRZl_kq0HPbBlVsWPMW97m5o&usp=sharing
Realizou-se uma analise exploratória dos dados da ocorrência de ocupações irregulares sobre a faixa de domínio da BR-104. Usando os dados os dados IVS de 2010 e associado a valor de terra nua disponibilizados pelo INCRA, para verificar o comportamento do fenômeno.
<iframe src="https://www.google.com/maps/d/u/0/embed?mid=1DKN0P84sqRZl_kq0HPbBlVsWPMW97m5o" width="640" height="480"></iframe>
O Índice de Vulnerabilidade Social (IVS) é um indicador que permite aos governos um detalhamento sobre as condições de vida de todas as camadas socioeconômicas do país, identificando àquelas que se encontram em vulnerabilidade e risco social.
https://i.ibb.co/wN0T2jM/correla-o.jpg| ocup_2010 | IVS_REN_10 | Dens_hab | IVS_INF_10 | Pop_Total | URB_RURAL | VTN_MED | |
|----------- |---------------- |---------------- |------------------- |---------------- |---------------- |--------------- |-------------- |
| | Min. :0.0000 | Min. :0.0000 | Min. :0.0000000 | Min. :0.0000 | Min. : 22679 | Min. :0.000 | Min. :2395 |
| | 1st Qu.:0.0000 | 1st Qu.:0.3570 | 1st Qu.:0.0003992 | 1st Qu.:0.1050 | 1st Qu.: 24903 | 1st Qu.:0.000 | 1st Qu.:5105 |
| | Median :1.0000 | Median :0.3570 | Median :0.0053653 | Median :0.1050 | Median :314912 | Median :1.000 | Median :5105 |
| | Mean :0.6554 | Mean :0.4076 | Mean :0.0059538 | Mean :0.1428 | Mean :178470 | Mean :0.747 | Mean :4701 |
| | 3rd Qu.:1.0000 | 3rd Qu.:0.5210 | 3rd Qu.:0.0097318 | 3rd Qu.:0.2090 | 3rd Qu.:314912 | 3rd Qu.:1.000 | 3rd Qu.:5105 |
| | Max. :1.0000 | Max. :0.6370 | Max. :0.0188397 | Max. :0.3810 | Max. :314912 | Max. :1.000 | Max. :8363 |
Pelo comportamento do fenômeno como ocupação e não ocupação, usamos a regressão logística para verificarmos o comportamento das variaveis.
Modelo Clássico:
HETEROCEDASTICIDADE (Breusch-Pagan, Koenker-Basset e Teste White)
Hipótese Nula: Variância é constante (Homocedasticidade), hipótese nula foi rejeitada
AUTOCORRELAÇÃO ESPACIAL
Índice de Moran
Como salvamos os resíduos e valores previstos na tabela, podemos elaborar mapas e gráficos a partir destas informações.
HISTOGRAMA DOS RESÍDUOS (OLS_RESIDU)
Modelo Espacial Lag
COMPARAÇÃO DE RESULTADOS
Regressão Simples | Regressão "Espacial Error" | |
---|---|---|
logLikelihood | -274.077 | 1372.915120 |
Akaike Info | 560.154 | -2739.83 |
Schwarz criterionCriterion | 590.779 | -2724.52 |
Regressão Spatial Error: Autocorrelação dos Resíduos Space > Univariate Local Moran’s I > ERRS_RESIDU
Regressão Simples | Regressão "Espacial Error" | Regressão "Espacial Lag" | |
---|---|---|---|
logLikelihood | -274.077 | 1372.915120 | 1372.78 |
Akaike InfoCriterion | 560.154 | -2739.83 | -2737.56 |
- Verificou-se forte dependência espacial da variável densidades populacional e densidade de Domicílios.
- Verificou-se forte dependência espacial da variável Valor da Terra Nua.
- Verificou-se forte dependência espacial da variável IVS com as Ocupações Irregulares.
Verifica-se que nas regiões de travessia urbana temos a grande número de ocorrências de baixo IVS com alto número de ocupações irregulares.
Destaque Caruaru-PE
Configuração de Cluster
Mapa de Cluster Kmeans