-
Notifications
You must be signed in to change notification settings - Fork 174
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Fix extra calling in qwen_vl_api, and use tempfile to replace storing tmp files * Add cache mode for qwen_vl_api * Add llama vision for video * Pass gen_kwargs in llama_vision * Add llama vision instruct
- Loading branch information
Showing
3 changed files
with
278 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,234 @@ | ||
import warnings | ||
from typing import List, Optional, Tuple, Union | ||
|
||
import numpy as np | ||
import PIL | ||
import torch | ||
from accelerate import Accelerator, DistributedType | ||
from accelerate.state import AcceleratorState | ||
from decord import VideoReader, cpu | ||
from torchvision.transforms.functional import to_pil_image | ||
from tqdm import tqdm | ||
from transformers import AutoConfig, AutoProcessor, MllamaForConditionalGeneration | ||
|
||
from lmms_eval import utils | ||
from lmms_eval.api.instance import Instance | ||
from lmms_eval.api.model import lmms | ||
from lmms_eval.api.registry import register_model | ||
|
||
warnings.filterwarnings("ignore") | ||
|
||
from loguru import logger as eval_logger | ||
|
||
DEFAULT_IMAGE_TOKEN = "<|image|>" | ||
|
||
|
||
@register_model("llama_vision") | ||
class LlamaVision(lmms): | ||
""" | ||
Llava Model for Hugging Face Transformers: https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/llava | ||
Adapted from the InstructBLIP model in lmms_eval/models/instructblip.py | ||
Example usage: | ||
accelerate launch --num_processes=8 --main_process_port 12345 -m lmms_eval \ | ||
--model llava_hf \ | ||
--model_args pretrained=llava-hf/llava-1.5-7b-hf \ | ||
--tasks seedbench \ | ||
--batch_size 1 \ | ||
--output_path ./logs/ \ | ||
--log_samples | ||
""" | ||
|
||
def __init__( | ||
self, | ||
pretrained: str = "meta-llama/Llama-3.2-11B-Vision", | ||
revision: str = "main", | ||
device: str = "cuda", | ||
dtype: Optional[Union[str, torch.dtype]] = "auto", | ||
batch_size: int = 1, | ||
trust_remote_code: Optional[bool] = False, | ||
attn_implementation: Optional[str] = None, | ||
device_map: str = "", | ||
max_frames_num: Optional[int] = 32, | ||
**kwargs, | ||
) -> None: | ||
super().__init__() | ||
# Do not use kwargs for now | ||
assert kwargs == {}, f"Unexpected kwargs: {kwargs}" | ||
|
||
accelerator = Accelerator() | ||
if accelerator.num_processes > 1 and device_map == "": | ||
self._device = torch.device(f"cuda:{accelerator.local_process_index}") | ||
self.device_map = f"cuda:{accelerator.local_process_index}" | ||
else: | ||
self._device = torch.device(device) | ||
self.device_map = device_map | ||
if isinstance(dtype, str) and dtype != "auto": | ||
dtype = getattr(torch, dtype) | ||
|
||
self.max_frames_num = max_frames_num | ||
self._model = MllamaForConditionalGeneration.from_pretrained(pretrained, revision=revision, torch_dtype=dtype, device_map=self.device_map, trust_remote_code=trust_remote_code, attn_implementation=attn_implementation) | ||
self.model.eval() | ||
self.processor = AutoProcessor.from_pretrained(pretrained) | ||
if accelerator.num_processes > 1 and device_map == "": | ||
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported." | ||
# If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model | ||
# Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works | ||
# I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work. | ||
if accelerator.distributed_type == DistributedType.DEEPSPEED: | ||
kwargs = { | ||
"train_micro_batch_size_per_gpu": self.batch_size_per_gpu, | ||
"train_batch_size": self.batch_size_per_gpu * accelerator.num_processes, | ||
} | ||
AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs) | ||
eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0") | ||
if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED: | ||
self._model = accelerator.prepare(self.model) | ||
else: | ||
self._model = accelerator.prepare_model(self.model, evaluation_mode=True) | ||
self.accelerator = accelerator | ||
if self.accelerator.is_local_main_process: | ||
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") | ||
self._rank = self.accelerator.local_process_index | ||
self._world_size = self.accelerator.num_processes | ||
elif accelerator.num_processes == 1 and device_map == "auto": | ||
eval_logger.info(f"Using {accelerator.num_processes} devices with pipeline parallelism") | ||
self._rank = 0 | ||
self._word_size = 1 | ||
else: | ||
eval_logger.info(f"Using single device: {self._device}") | ||
self.model.to(self._device) | ||
self._rank = 0 | ||
self._word_size = 1 | ||
self.accelerator = accelerator | ||
|
||
@property | ||
def config(self): | ||
# return the associated transformers.AutoConfig for the given pretrained model. | ||
return self._config | ||
|
||
@property | ||
def tokenizer(self): | ||
return self._tokenizer | ||
|
||
@property | ||
def model(self): | ||
# returns the model, unwrapping it if using Accelerate | ||
if hasattr(self, "accelerator"): | ||
return self.accelerator.unwrap_model(self._model) | ||
else: | ||
return self._model | ||
|
||
@property | ||
def eot_token_id(self): | ||
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* | ||
return self.tokenizer.eos_token_id | ||
|
||
@property | ||
def max_length(self): | ||
return self._max_length | ||
|
||
@property | ||
def batch_size(self): | ||
return self.batch_size_per_gpu | ||
|
||
@property | ||
def device(self): | ||
return self._device | ||
|
||
@property | ||
def rank(self): | ||
return self._rank | ||
|
||
@property | ||
def world_size(self): | ||
return self._world_size | ||
|
||
def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]: | ||
""" """ | ||
add_special_tokens = False if add_special_tokens is None else add_special_tokens | ||
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens) | ||
# left-truncate the encoded context to be at most `left_truncate_len` tokens long | ||
if left_truncate_len: | ||
encoding = encoding[-left_truncate_len:] | ||
return encoding | ||
|
||
def tok_decode(self, tokens): | ||
return self.tokenizer.decode(tokens) | ||
|
||
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: | ||
assert False, "Not implemented" | ||
|
||
def flatten(self, input): | ||
new_list = [] | ||
for i in input: | ||
for j in i: | ||
new_list.append(j) | ||
return new_list | ||
|
||
def load_video(self, video_path, max_frames_num): | ||
if type(video_path) == str: | ||
vr = VideoReader(video_path, ctx=cpu(0)) | ||
else: | ||
vr = VideoReader(video_path[0], ctx=cpu(0)) | ||
total_frame_num = len(vr) | ||
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int) | ||
frame_idx = uniform_sampled_frames.tolist() | ||
spare_frames = vr.get_batch(frame_idx).asnumpy() | ||
return spare_frames # (frames, height, width, channels) | ||
|
||
def generate_until(self, requests: List[Instance]) -> List[str]: | ||
res = [] | ||
|
||
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding") | ||
|
||
for contexts, gen_kwargs, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]: | ||
visuals = [doc_to_visual(self.task_dict[task][split][doc_id])] | ||
visuals = self.flatten(visuals) | ||
|
||
messages = [{"role": "user", "content": []}] | ||
images = [] | ||
|
||
for visual in visuals: | ||
if isinstance(visual, str): | ||
frames = self.load_video(visual, self.max_frames_num) | ||
frames = torch.from_numpy(frames).permute(0, 3, 1, 2) | ||
images.extend([to_pil_image(frame) for frame in frames]) | ||
elif isinstance(visual, PIL.Image.Image): | ||
images.append(visual) | ||
|
||
for _ in range(len(images)): | ||
messages[-1]["content"].append({"type": "image"}) | ||
messages[-1]["content"].append({"type": "text", "content": contexts}) | ||
prompt = self.processor.apply_chat_template(messages, add_generation_prompt=True) | ||
inputs = self.processor(images, prompt, return_tensors="pt").to(self.model.device) | ||
|
||
if "max_new_tokens" not in gen_kwargs: | ||
gen_kwargs["max_new_tokens"] = 1024 | ||
if "temperature" not in gen_kwargs: | ||
gen_kwargs["temperature"] = 0 | ||
if "top_p" not in gen_kwargs: | ||
gen_kwargs["top_p"] = None | ||
if "num_beams" not in gen_kwargs: | ||
gen_kwargs["num_beams"] = 1 | ||
if "do_sample" not in gen_kwargs: | ||
gen_kwargs["do_sample"] = False | ||
|
||
with torch.no_grad(): | ||
output = self.model.generate( | ||
**inputs, | ||
max_new_tokens=gen_kwargs["max_new_tokens"], | ||
temperature=gen_kwargs["temperature"], | ||
do_sample=gen_kwargs["do_sample"], | ||
) | ||
output = output[:, inputs["input_ids"].shape[-1] :] | ||
res.append(self.processor.decode(output[0])) | ||
|
||
pbar.update(1) | ||
pbar.close() | ||
return res | ||
|
||
def generate_until_multi_round(self, requests) -> List[str]: | ||
raise NotImplementedError("TODO: Implement multi-round generation for LLaVAHF") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters