Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feat] LLaMA-3.2-Vision #314

Merged
merged 5 commits into from
Oct 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions lmms_eval/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@
"xcomposer2d5": "XComposer2D5",
"oryx": "Oryx",
"videochat2": "VideoChat2",
"llama_vision": "LlamaVision",
}


Expand Down
234 changes: 234 additions & 0 deletions lmms_eval/models/llama_vision.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,234 @@
import warnings
from typing import List, Optional, Tuple, Union

import numpy as np
import PIL
import torch
from accelerate import Accelerator, DistributedType
from accelerate.state import AcceleratorState
from decord import VideoReader, cpu
from torchvision.transforms.functional import to_pil_image
from tqdm import tqdm
from transformers import AutoConfig, AutoProcessor, MllamaForConditionalGeneration

from lmms_eval import utils
from lmms_eval.api.instance import Instance
from lmms_eval.api.model import lmms
from lmms_eval.api.registry import register_model

warnings.filterwarnings("ignore")

from loguru import logger as eval_logger

DEFAULT_IMAGE_TOKEN = "<|image|>"


@register_model("llama_vision")
class LlamaVision(lmms):
"""
Llava Model for Hugging Face Transformers: https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/llava

Adapted from the InstructBLIP model in lmms_eval/models/instructblip.py

Example usage:

accelerate launch --num_processes=8 --main_process_port 12345 -m lmms_eval \
--model llava_hf \
--model_args pretrained=llava-hf/llava-1.5-7b-hf \
--tasks seedbench \
--batch_size 1 \
--output_path ./logs/ \
--log_samples
"""

def __init__(
self,
pretrained: str = "meta-llama/Llama-3.2-11B-Vision",
revision: str = "main",
device: str = "cuda",
dtype: Optional[Union[str, torch.dtype]] = "auto",
batch_size: int = 1,
trust_remote_code: Optional[bool] = False,
attn_implementation: Optional[str] = None,
device_map: str = "",
max_frames_num: Optional[int] = 32,
**kwargs,
) -> None:
super().__init__()
# Do not use kwargs for now
assert kwargs == {}, f"Unexpected kwargs: {kwargs}"

accelerator = Accelerator()
if accelerator.num_processes > 1 and device_map == "":
self._device = torch.device(f"cuda:{accelerator.local_process_index}")
self.device_map = f"cuda:{accelerator.local_process_index}"
else:
self._device = torch.device(device)
self.device_map = device_map
if isinstance(dtype, str) and dtype != "auto":
dtype = getattr(torch, dtype)

self.max_frames_num = max_frames_num
self._model = MllamaForConditionalGeneration.from_pretrained(pretrained, revision=revision, torch_dtype=dtype, device_map=self.device_map, trust_remote_code=trust_remote_code, attn_implementation=attn_implementation)
self.model.eval()
self.processor = AutoProcessor.from_pretrained(pretrained)
if accelerator.num_processes > 1 and device_map == "":
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
# If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model
# Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works
# I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work.
if accelerator.distributed_type == DistributedType.DEEPSPEED:
kwargs = {
"train_micro_batch_size_per_gpu": self.batch_size_per_gpu,
"train_batch_size": self.batch_size_per_gpu * accelerator.num_processes,
}
AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs)
eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0")
if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED:
self._model = accelerator.prepare(self.model)
else:
self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
self.accelerator = accelerator
if self.accelerator.is_local_main_process:
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes
elif accelerator.num_processes == 1 and device_map == "auto":
eval_logger.info(f"Using {accelerator.num_processes} devices with pipeline parallelism")
self._rank = 0
self._word_size = 1
else:
eval_logger.info(f"Using single device: {self._device}")
self.model.to(self._device)
self._rank = 0
self._word_size = 1
self.accelerator = accelerator

@property
def config(self):
# return the associated transformers.AutoConfig for the given pretrained model.
return self._config

@property
def tokenizer(self):
return self._tokenizer

@property
def model(self):
# returns the model, unwrapping it if using Accelerate
if hasattr(self, "accelerator"):
return self.accelerator.unwrap_model(self._model)
else:
return self._model

@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self.tokenizer.eos_token_id

@property
def max_length(self):
return self._max_length

@property
def batch_size(self):
return self.batch_size_per_gpu

@property
def device(self):
return self._device

@property
def rank(self):
return self._rank

@property
def world_size(self):
return self._world_size

def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]:
""" """
add_special_tokens = False if add_special_tokens is None else add_special_tokens
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
if left_truncate_len:
encoding = encoding[-left_truncate_len:]
return encoding

def tok_decode(self, tokens):
return self.tokenizer.decode(tokens)

def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
assert False, "Not implemented"

def flatten(self, input):
new_list = []
for i in input:
for j in i:
new_list.append(j)
return new_list

def load_video(self, video_path, max_frames_num):
if type(video_path) == str:
vr = VideoReader(video_path, ctx=cpu(0))
else:
vr = VideoReader(video_path[0], ctx=cpu(0))
total_frame_num = len(vr)
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
spare_frames = vr.get_batch(frame_idx).asnumpy()
return spare_frames # (frames, height, width, channels)

def generate_until(self, requests: List[Instance]) -> List[str]:
res = []

pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding")

for contexts, gen_kwargs, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]:
visuals = [doc_to_visual(self.task_dict[task][split][doc_id])]
visuals = self.flatten(visuals)

messages = [{"role": "user", "content": []}]
images = []

for visual in visuals:
if isinstance(visual, str):
frames = self.load_video(visual, self.max_frames_num)
frames = torch.from_numpy(frames).permute(0, 3, 1, 2)
images.extend([to_pil_image(frame) for frame in frames])
elif isinstance(visual, PIL.Image.Image):
images.append(visual)

for _ in range(len(images)):
messages[-1]["content"].append({"type": "image"})
messages[-1]["content"].append({"type": "text", "content": contexts})
prompt = self.processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = self.processor(images, prompt, return_tensors="pt").to(self.model.device)

if "max_new_tokens" not in gen_kwargs:
gen_kwargs["max_new_tokens"] = 1024
if "temperature" not in gen_kwargs:
gen_kwargs["temperature"] = 0
if "top_p" not in gen_kwargs:
gen_kwargs["top_p"] = None
if "num_beams" not in gen_kwargs:
gen_kwargs["num_beams"] = 1
if "do_sample" not in gen_kwargs:
gen_kwargs["do_sample"] = False

with torch.no_grad():
output = self.model.generate(
**inputs,
max_new_tokens=gen_kwargs["max_new_tokens"],
temperature=gen_kwargs["temperature"],
do_sample=gen_kwargs["do_sample"],
)
output = output[:, inputs["input_ids"].shape[-1] :]
res.append(self.processor.decode(output[0]))

pbar.update(1)
pbar.close()
return res

def generate_until_multi_round(self, requests) -> List[str]:
raise NotImplementedError("TODO: Implement multi-round generation for LLaVAHF")
47 changes: 43 additions & 4 deletions lmms_eval/models/qwen_vl_api.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
import base64
import json
import os
import tempfile
import time
from copy import deepcopy
from io import BytesIO
Expand Down Expand Up @@ -33,14 +35,32 @@ def __init__(
image_token: str = "<image>", # Use to separate interleaved image and text
system_prompt: str = "", # Whether you want some special system prompt here
tmp_folder: str = "./tmp", # Due to qwen's api restriction,
continual_mode: bool = False,
response_persistent_folder: str = None,
**kwargs,
) -> None:
super().__init__()
self.continual_mode = continual_mode

self.model_version = model_version
self.image_token = image_token
self.system_prompt = system_prompt
self.tmp_folder = tmp_folder
if self.continual_mode:
if response_persistent_folder is None:
raise ValueError("Continual mode requires a persistent path for the response. Please provide a valid path.")

os.makedirs(response_persistent_folder, exist_ok=True)
self.response_persistent_folder = response_persistent_folder
self.response_persistent_file = os.path.join(self.response_persistent_folder, f"{self.model_version}_response.json")

if os.path.exists(self.response_persistent_file):
with open(self.response_persistent_file, "r") as f:
self.response_cache = json.load(f)
self.cache_mode = "resume"
else:
self.response_cache = {}
self.cache_mode = "start"

@property
def rank(self):
Expand All @@ -50,20 +70,32 @@ def rank(self):
def world_size(self):
return self._world_size

def save_image_to_temp_file(self, image):
temp_file = tempfile.NamedTemporaryFile(suffix=".jpeg", delete=True)
image.save(temp_file.name)
return temp_file

def generate_until(self, requests) -> List[str]:
res = []
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding")
os.makedirs(self.tmp_folder, exist_ok=True)

for contexts, gen_kwargs, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]:
if self.continual_mode is True and self.cache_mode == "resume":
doc_uuid = f"{task}___{split}___{doc_id}"
if doc_uuid in self.response_cache:
response_text = self.response_cache[doc_uuid]
if response_text:
res.append(response_text)
pbar.update(1)
continue
# encode, pad, and truncate contexts for this batch
visuals = [doc_to_visual(self.task_dict[task][split][doc_id])]
visuals = self.flatten(visuals)
imgs = []

for idx, visual in enumerate(visuals):
visual.save(os.path.join(self.tmp_folder, f"tmp_{idx}_{self.rank}_{self.world_size}.jpg"))
imgs.append(os.path.join(self.tmp_folder, f"tmp_{idx}_{self.rank}_{self.world_size}.jpg"))
temp_file = self.save_image_to_temp_file(visual)
imgs.append(temp_file.name)

messages = [{"role": "user", "content": []}]

Expand All @@ -90,7 +122,8 @@ def generate_until(self, requests) -> List[str]:

for attempt in range(5):
try:
response_data = dashscope.MultiModalConversation.call(model=self.model_version, messages=messages, api_key=API_KEY, max_length=gen_kwargs["max_new_tokens"])
response_data = dashscope.MultiModalConversation.call(model=self.model_version, messages=messages, api_key=API_KEY, max_length=gen_kwargs["max_new_tokens"], temperature=gen_kwargs["temperature"])
break
except Exception as e:
eval_logger.info(f"Attempt {attempt + 1} failed with error: {str(e)}")
if attempt < 5 - 1: # If we have retries left, sleep and then continue to next attempt
Expand All @@ -106,6 +139,12 @@ def generate_until(self, requests) -> List[str]:
eval_logger.error(f"Error {e} happens when parsing input.")
eval_logger.error(f"{response_data}")
res.append("")

if self.continual_mode is True: # Cache the response
doc_uuid = f"{task}___{split}___{doc_id}"
self.response_cache[doc_uuid] = res[-1]
with open(self.response_persistent_file, "w") as f:
json.dump(self.response_cache, f)
pbar.update(1)

pbar.close()
Expand Down
Loading