This is the PyTorch code our CVPR 2022 work KG-SP: Knowledge Guided Simple Primitives for Open World Compositional Zero-Shot Learning . The code provides the implementation of our proposed method KG-SP, along with the baselines of CompCos and CGE taken from here. Additionally, we also provide the splits for our pCZSL setting on 3 datasets (UT-Zappos, MIT-States and C-GQA).
-
Clone the repo
-
We recommend using Anaconda for environment setup. To create the environment and activate it, please run:
conda env create --file environment.yml
conda activate czsl
- Go to the cloned repo and open a terminal. Download the datasets and embeddings, specifying the desired path (e.g.
DATA_ROOT
in the example):
bash ./utils/download_data.sh DATA_ROOT
mkdir logs
Open World. To train a model, the command is simply:
python train.py --config CONFIG_FILE
where CONFIG_FILE
is the path to the configuration file of the model.
The folder configs
contains configuration files for all methods, i.e. CGE in configs/cge
, CompCos in configs/compcos
, and the other methods in configs/baselines
.
To run KG-SP on MIT-States, the command is just:
python train.py --config configs/kgsp/mit.yml --open_world --fast
On UT-Zappos, the command is:
python train.py --config configs/kgsp/utzappos.yml --open_world --fast
Partial Label Setting To train KG-SP (in the partial label setting) on MIT-States, run:
python train.py --config configs/kgsp/partial/mit.yml --partial --fast
Note: To create a new config, all the available arguments are indicated in flags.py
.
Open World. To test a model in the open world setting, run:
python test.py --logpath LOG_DIR --open_world --fast
Partial Label Setting To test a KG-SP model on the partial label setting, a similar command can be used:
python test.py --logpath LOG_DIR --fast --partial
If you use this code, please cite
@inproceedings{karthik2022open,
title={KG-SP: Knowledge Guided Simple Primitives for Open World Compositional Zero-Shot Learning},
author={Karthik, S and Mancini, M and Akata, Zeynep},
booktitle={35th IEEE Conference on Computer Vision and Pattern Recognition},
year={2022},
organization={IEEE}
}
and
@inproceedings{mancini2021open,
title={Open World Compositional Zero-Shot Learning},
author={Mancini, M and Naeem, MF and Xian, Y and Akata, Zeynep},
booktitle={34th IEEE Conference on Computer Vision and Pattern Recognition},
year={2021},
organization={IEEE}
}