Skip to content

Commit

Permalink
Update HF API snippet
Browse files Browse the repository at this point in the history
  • Loading branch information
ericup committed May 2, 2024
1 parent 699f939 commit 13f3e48
Showing 1 changed file with 81 additions and 23 deletions.
104 changes: 81 additions & 23 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -334,40 +334,98 @@ apptainer pull --dir . --disable-cache docker://ericup/celldetection:latest

Find us on Hugging Face and upload your own images for segmentation: https://huggingface.co/spaces/ericup/celldetection

There's also an API (Python & JavaScript), allowing you to utilize community GPUs (currently Nvidia A100) remotely!

<details>
<summary style="font-weight: bold; color: #888888">Hugging Face API</summary>

### Python

```python
import requests

response = requests.post("https://ericup-celldetection.hf.space/run/predict", json={
"data": [
"",
"ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c",
]
}).json()

data = response["data"]
from gradio_client import Client

# Define inputs (local filename or URL)
inputs = 'https://raw.githubusercontent.com/scikit-image/scikit-image/main/skimage/data/coins.png'

# Set up client
client = Client("ericup/celldetection")

# Predict
overlay_filename, img_filename, h5_filename, csv_filename = client.predict(
inputs, # str: Local filepath or URL of your input image

# Model name
'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c',

# Custom Score Threshold (numeric value between 0 and 1)
False, .9, # bool: Whether to use custom setting; float: Custom setting

# Custom NMS Threshold
False, .3142, # bool: Whether to use custom setting; float: Custom setting

# Custom Number of Sample Points
False, 128, # bool: Whether to use custom setting; int: Custom setting

# Overlapping objects
True, # bool: Whether to allow overlapping objects

# API name (keep as is)
api_name="/predict"
)


# Example usage: Code below only shows how to use the results
from matplotlib import pyplot as plt
import celldetection as cd
import pandas as pd

# Read results from local temporary files
img = imread(img_filename)
overlay = imread(overlay_filename) # random colors per instance; transparent overlap
properties = pd.read_csv(csv_filename)
contours, scores, label_image = cd.from_h5(h5_filename, 'contours', 'scores', 'labels')

# Optionally display overlay
cd.imshow_row(img, img, figsize=(16, 9))
cd.imshow(overlay)
plt.show()

# Optionally display contours with text
cd.imshow_row(img, img, figsize=(16, 9))
cd.plot_contours(contours, texts=['score: %d%%\narea: %d' % s for s in zip((scores * 100).round(), properties.area)])
plt.show()
```

### Javascript

```javascript
const response = await fetch("https://ericup-celldetection.hf.space/run/predict", {
method: "POST",
headers: {"Content-Type": "application/json"},
body: JSON.stringify({
data: [
"",
"ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c",
]
})
});

const data = await response.json();

import { client } from "@gradio/client";

const response_0 = await fetch("https://raw.githubusercontent.com/scikit-image/scikit-image/main/skimage/data/coins.png");
const exampleImage = await response_0.blob();

const app = await client("ericup/celldetection");
const result = await app.predict("/predict", [
exampleImage, // blob: Your input image

// Model name (hosted model or URL)
"ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c",

// Custom Score Threshold (numeric value between 0 and 1)
false, .9, // bool: Whether to use custom setting; float: Custom setting

// Custom NMS Threshold
false, .3142, // bool: Whether to use custom setting; float: Custom setting

// Custom Number of Sample Points
false, 128, // bool: Whether to use custom setting; int: Custom setting

// Overlapping objects
true, // bool: Whether to allow overlapping objects

// API name (keep as is)
api_name="/predict"
]);
```

</details>
Expand Down

0 comments on commit 13f3e48

Please sign in to comment.