testOps is a tool to deploy, time and analyse FaaS functions currently AWS and GCP are supported
- python3.9+
- virtualenv installed
- lockfile for usage with venv is supplied
- create virtualenviroment
- navigate to venv\Scripts and run activate (depending on shell and os)
- then use pipenv sync to install dependencies (in testOps root folder)
python testops.py [-h] [-d] [-i] [-a] [-keep {all,none,pareto}] filename
- -h displays help
- -d or --deploy activates the deployer functionality
- -i or --invoke activates the invoker and timing functionality
- -a or --analyse activates the analyser functionality
- -keep pick all, none or pareto to declare which functions should be kept after the run is finished, the pareto option requires -a (the analyser) to be active. if this option is ignores -keep all is used
- filename the filename of the input json
- testops requires a deployed pyStorage function on AWS
- testops requires a credentials.json which holds the credentials for AWS / GCP
{
"amazon":
{
"aws_access_key_id": "xyz",
"aws_secret_access_key": "xyz",
"aws_session_token": "xyz"
},
"google":
{
"client_email": "xyz@appspot.gserviceaccount.com",
"private_key":"-----BEGIN PRIVATE KEY-----\xyz\n-----END PRIVATE KEY-----\n",
"project_id": "xyz"
}
}
{
"function_name": "function_name",
"aws_code": "s3://xyz.zip",
"gcp_code": "s3://xyz.zip",
"no_op_code": "s3://xyz.zip",
"aws_handler": "lambda_function.lambda_handler",
"gcp_handler": "entry_handler",
"no_op_handler_aws": "lambda_function.lambda_handler",
"no_op_handler_gcp": "entry_handler",
"gcp_project_id": "xyz",
"aws_deployment_role" : "arn:/LabRole",
"pyStorage_arn": "arn::function:pyStorage",
"aws_runtime": "python3.9",
"gcp_runtime": "python39",
"file_type": "zip",
"repetitions_of_experiment": 2,
"repetitions_per_function": 6,
"concurrency": 3,
"payload": [{"input": 25}],
"AWS_regions": {
"us-west-2": {
"memory_configurations":[
128
]},
"us-east-1":{
"memory_configurations" :[
226
]}
},
"GCP_regions": {
"us-west2": {
"memory_configurations": [
128
]}
}
}
small bonus, in folder aws layer creator you can find a docker script to create an AWS layer out of a requirement.txt refer to readme in the folder