Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add adm18 #302

Merged
merged 12 commits into from
Apr 14, 2023
441 changes: 441 additions & 0 deletions examples/AltCLIP-m18/README.md

Large diffs are not rendered by default.

89 changes: 89 additions & 0 deletions examples/AltCLIP-m18/altclip_evaluation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# Copyright © 2022 BAAI. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
import torch
from flagai.auto_model.auto_loader import AutoLoader
import zeroshot_classification
import json
import os
from torchvision.datasets import CIFAR10

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
maxlen = 256

dataset_root = "./clip_benchmark_datasets/"
dataset_name = "cifar10"

auto_loader = AutoLoader(
task_name="txt_img_matching",
model_dir="./checkpoints/",
model_name="AltCLIP-XLMR-L-m18" # Load the checkpoints from Modelhub(model.baai.ac.cn/models)
)

model = auto_loader.get_model()
model.to(device)
model.eval()
tokenizer = auto_loader.get_tokenizer()
transform = auto_loader.get_transform()

dataset = CIFAR10(root=os.path.join(dataset_root, dataset_name),
transform=transform,
download=True)
batch_size = 128
num_workers = 4

template = {"cifar10": [
"a photo of a {c}.",
"a blurry photo of a {c}.",
"a black and white photo of a {c}.",
"a low contrast photo of a {c}.",
"a high contrast photo of a {c}.",
"a bad photo of a {c}.",
"a good photo of a {c}.",
"a photo of a small {c}.",
"a photo of a big {c}.",
"a photo of the {c}.",
"a blurry photo of the {c}.",
"a black and white photo of the {c}.",
"a low contrast photo of the {c}.",
"a high contrast photo of the {c}.",
"a bad photo of the {c}.",
"a good photo of the {c}.",
"a photo of the small {c}.",
"a photo of the big {c}."
],
}
def evaluate():
if dataset:
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
)

zeroshot_templates = template["cifar10"]
classnames = dataset.classes if hasattr(dataset, "classes") else None

metrics = zeroshot_classification.evaluate(
model,
dataloader,
tokenizer,
classnames,
zeroshot_templates,
device=device,
amp=True,
)

dump = {
"dataset": dataset_name,
"metrics": metrics
}

print(dump)
with open("./result.txt", "w") as f:
json.dump(dump, f)
return metrics

if __name__ == "__main__":
evaluate()
65 changes: 65 additions & 0 deletions examples/AltCLIP-m18/altclip_finetuning.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
# Copyright © 2022 BAAI. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
import torch
from flagai.auto_model.auto_loader import AutoLoader
import os
from flagai.trainer import Trainer
from torchvision.datasets import (
CIFAR10
)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

dataset_root = "./clip_benchmark_datasets"
dataset_name = "cifar10"

batch_size = 4
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

auto_loader = AutoLoader(
task_name="txt_img_matching",
model_dir="./checkpoints",
model_name="AltCLIP-XLMR-L-m18" # Load the checkpoints from Modelhub(model.baai.ac.cn/models)
)

model = auto_loader.get_model()
model.to(device)
model.eval()
tokenizer = auto_loader.get_tokenizer()
transform = auto_loader.get_transform()

trainer = Trainer(env_type="pytorch",
pytorch_device=device,
experiment_name="clip_finetuning",
batch_size=4,
lr=1e-4,
epochs=10,
log_interval=10)

dataset = CIFAR10(root=os.path.join(dataset_root, dataset_name),
transform=transform,
download=True)

def cifar10_collate_fn(batch):
# image shape is (batch, 3, 224, 224)
images = torch.tensor([b[0]["pixel_values"][0] for b in batch])
# text_id shape is (batch, n)
input_ids = torch.tensor([tokenizer(f"a photo of a {b[1]}",
padding=True,
truncation=True,
max_length=77)["input_ids"] for b in batch])

attention_mask = torch.tensor([tokenizer(f"a photo of a {b[1]}",
padding=True,
truncation=True,
max_length=77)["attention_mask"] for b in batch])

return {
"pixel_values": images,
"input_ids": input_ids,
"attention_mask": attention_mask,
}

if __name__ == "__main__":
trainer.train(model=model, train_dataset=dataset, collate_fn=cifar10_collate_fn)
42 changes: 42 additions & 0 deletions examples/AltCLIP-m18/altclip_inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
import torch
from PIL import Image
from flagai.auto_model.auto_loader import AutoLoader

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

loader = AutoLoader(
task_name="txt_img_matching",
model_name="AltCLIP-XLMR-L-m18", # Load the checkpoints from Modelhub(model.baai.ac.cn/models)
model_dir="./checkpoints"
)

model = loader.get_model()

tokenizer = loader.get_tokenizer()
transform = loader.get_transform()

model.eval()
model.to(device)
tokenizer = loader.get_tokenizer()

def inference():
image = Image.open("./examples/AltCLIP-m18//dog.jpeg")
image = transform(image)
image = torch.tensor(image["pixel_values"]).to(device)
tokenizer_out = tokenizer(["a rat", "a dog", "a cat"],
padding=True,
truncation=True,
max_length=77,
return_tensors='pt')

text = tokenizer_out["input_ids"].to(device)
attention_mask = tokenizer_out["attention_mask"].to(device)
with torch.no_grad():
image_features = model.get_image_features(image)
text_features = model.get_text_features(text, attention_mask=attention_mask)
text_probs = (image_features @ text_features.T).softmax(dim=-1)

print(text_probs.cpu().numpy()[0].tolist())

if __name__=="__main__":
inference()
Binary file added examples/AltCLIP-m18/dog.jpeg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading