Skip to content

Commit

Permalink
fix docs
Browse files Browse the repository at this point in the history
  • Loading branch information
CarloLucibello committed Oct 10, 2024
1 parent e5ab99b commit 5acb42a
Show file tree
Hide file tree
Showing 6 changed files with 11 additions and 11 deletions.
2 changes: 1 addition & 1 deletion docs/src/guide/models/recurrence.md
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ Chain(
),
Dense(5 => 1), # 6 parameters
) # Total: 6 trainable arrays, 51 parameters,
# plus 1 non-trainable, 5 parameters, summarysize 580 bytes.
# plus 1 non-trainable, 5 parameters, summarysize 540 bytes.
```
In this example, each output has only one component.

Expand Down
4 changes: 2 additions & 2 deletions docs/src/guide/saving.md
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ julia> m = Chain(Dense(10 => 5, relu), Dense(5 => 2))
Chain(
Dense(10 => 5, relu), # 55 parameters
Dense(5 => 2), # 12 parameters
) # Total: 4 arrays, 67 parameters, 524 bytes.
) # Total: 4 arrays, 67 parameters, 476 bytes.
julia> for epoch in 1:10
# ... train model ...
Expand Down Expand Up @@ -131,7 +131,7 @@ julia> model
Chain(
Dense(10 => 5, relu), # 55 parameters
Dense(5 => 2), # 12 parameters
) # Total: 4 arrays, 67 parameters, 524 bytes.
) # Total: 4 arrays, 67 parameters, 476 bytes.
```
!!! warning
Saving models this way could lead to compatibility issues across julia versions
Expand Down
2 changes: 1 addition & 1 deletion src/layers/basic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -298,7 +298,7 @@ Maxout(
Dense(5 => 7, tanh), # 42 parameters
Dense(5 => 7, tanh), # 42 parameters
Dense(5 => 7, tanh), # 42 parameters
) # Total: 6 arrays, 126 parameters, 888 bytes.
) # Total: 6 arrays, 126 parameters, 816 bytes.
julia> Flux.outputsize(m3, (5, 11))
(7, 11)
Expand Down
2 changes: 1 addition & 1 deletion src/layers/macro.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ Trio(
Dense(2 => 1, tanh), # 3 parameters
Dense(1 => 1; bias=false), # 1 parameters
Dropout(0.4),
) # Total: 3 arrays, 4 parameters, 224 bytes.
) # Total: 3 arrays, 4 parameters, 240 bytes.
```
"""
Expand Down
8 changes: 4 additions & 4 deletions src/layers/recurrent.jl
Original file line number Diff line number Diff line change
Expand Up @@ -232,7 +232,7 @@ julia> r = RNN(3 => 5)
Recur(
RNNCell(3 => 5, tanh), # 50 parameters
) # Total: 4 trainable arrays, 50 parameters,
# plus 1 non-trainable, 5 parameters, summarysize 432 bytes.
# plus 1 non-trainable, 5 parameters, summarysize 424 bytes.
julia> r(rand(Float32, 3)) |> size
(5,)
Expand Down Expand Up @@ -341,7 +341,7 @@ julia> l = LSTM(3 => 5)
Recur(
LSTMCell(3 => 5), # 190 parameters
) # Total: 5 trainable arrays, 190 parameters,
# plus 2 non-trainable, 10 parameters, summarysize 1.062 KiB.
# plus 2 non-trainable, 10 parameters, summarysize 1.023 KiB.
julia> l(rand(Float32, 3)) |> size
(5,)
Expand Down Expand Up @@ -415,7 +415,7 @@ julia> g = GRU(3 => 5)
Recur(
GRUCell(3 => 5), # 140 parameters
) # Total: 4 trainable arrays, 140 parameters,
# plus 1 non-trainable, 5 parameters, summarysize 792 bytes.
# plus 1 non-trainable, 5 parameters, summarysize 784 bytes.
julia> g(rand(Float32, 3)) |> size
(5,)
Expand Down Expand Up @@ -485,7 +485,7 @@ julia> g = GRUv3(3 => 5)
Recur(
GRUv3Cell(3 => 5), # 140 parameters
) # Total: 5 trainable arrays, 140 parameters,
# plus 1 non-trainable, 5 parameters, summarysize 848 bytes.
# plus 1 non-trainable, 5 parameters, summarysize 840 bytes.
julia> g(rand(Float32, 3)) |> size
(5,)
Expand Down
4 changes: 2 additions & 2 deletions src/utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -186,7 +186,7 @@ julia> round(std(Flux.kaiming_normal(10, 1000)), digits=3)
0.044f0
julia> round(std(Flux.kaiming_normal(1000, 10)), digits=3)
0.449f0
0.45f0
julia> round(std(Flux.kaiming_normal(1000, 1000)), digits=3)
0.045f0
Expand Down Expand Up @@ -590,7 +590,7 @@ Chain(
),
Dense(64 => 10), # 650 parameters
) # Total: 6 trainable arrays, 51_018 parameters,
# plus 2 non-trainable, 128 parameters, summarysize 200.312 KiB.
# plus 2 non-trainable, 128 parameters, summarysize 200.211 KiB.
julia> Flux.modules(m2)
7-element Vector{Any}:
Expand Down

0 comments on commit 5acb42a

Please sign in to comment.