Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

instance normalization #634

Merged
merged 4 commits into from
Mar 7, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/Flux.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ using MacroTools, Juno, Requires, Reexport, Statistics, Random
using MacroTools: @forward

export Chain, Dense, RNN, LSTM, GRU, Conv, ConvTranspose, MaxPool, MeanPool,
DepthwiseConv, Dropout, LayerNorm, BatchNorm,
DepthwiseConv, Dropout, LayerNorm, BatchNorm, InstanceNorm,
params, mapleaves, cpu, gpu, f32, f64

@reexport using NNlib
Expand Down
100 changes: 100 additions & 0 deletions src/layers/normalise.jl
Original file line number Diff line number Diff line change
Expand Up @@ -155,3 +155,103 @@ function Base.show(io::IO, l::BatchNorm)
(l.λ == identity) || print(io, ", λ = $(l.λ)")
print(io, ")")
end


"""
InstanceNorm(channels::Integer, σ = identity;
initβ = zeros, initγ = ones,
ϵ = 1e-8, momentum = .1)

Instance Normalization layer. The `channels` input should be the size of the
channel dimension in your data (see below).

Given an array with `N` dimensions, call the `N-1`th the channel dimension. (For
a batch of feature vectors this is just the data dimension, for `WHCN` images
it's the usual channel dimension.)

`InstanceNorm` computes the mean and variance for each each `W×H×1×1` slice and
shifts them to have a new mean and variance (corresponding to the learnable,
per-channel `bias` and `scale` parameters).

See [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022).

Example:
```julia
m = Chain(
Dense(28^2, 64),
InstanceNorm(64, relu),
Dense(64, 10),
InstanceNorm(10),
softmax)
```
"""
expand_inst = (x, as) -> reshape(repeat(x, outer=[1, as[length(as)]]), as...)

mutable struct InstanceNorm{F,V,W,N}
λ::F # activation function
β::V # bias
γ::V # scale
μ::W # moving mean
σ²::W # moving std
ϵ::N
momentum::N
active::Bool
end

InstanceNorm(chs::Integer, λ = identity;
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i), ϵ = 1f-5, momentum = 0.1f0) =
InstanceNorm(λ, param(initβ(chs)), param(initγ(chs)),
zeros(chs), ones(chs), ϵ, momentum, true)

function (in::InstanceNorm)(x)
size(x, ndims(x)-1) == length(in.β) ||
error("InstanceNorm expected $(length(in.β)) channels, got $(size(x, ndims(x)-1))")
ndims(x) > 2 ||
error("InstanceNorm requires at least 3 dimensions. With 2 dimensions an array of zeros would be returned")
# these are repeated later on depending on the batch size
dims = length(size(x))
c = size(x, dims-1)
bs = size(x, dims)
affine_shape = ones(Int, dims)
affine_shape[end-1] = c
affine_shape[end] = bs
m = prod(size(x)[1:end-2])
γ, β = expand_inst(in.γ, affine_shape), expand_inst(in.β, affine_shape)

if !in.active
μ = expand_inst(in.μ, affine_shape)
σ² = expand_inst(in.σ², affine_shape)
ϵ = in.ϵ
else
T = eltype(x)

ϵ = data(convert(T, in.ϵ))
axes = 1:dims-2 # axes to reduce along (all but channels and batch size axes)
μ = mean(x, dims = axes)
σ² = mean((x .- μ) .^ 2, dims = axes)

# update moving mean/std
mtm = data(convert(T, in.momentum))
in.μ = dropdims(mean(repeat((1 - mtm) .* in.μ, outer=[1, bs]) .+ mtm .* reshape(data(μ), (c, bs)), dims = 2), dims=2)
in.σ² = dropdims(mean((repeat((1 - mtm) .* in.σ², outer=[1, bs]) .+ (mtm * m / (m - 1)) .* reshape(data(σ²), (c, bs))), dims = 2), dims=2)
end

let λ = in.λ
x̂ = (x .- μ) ./ sqrt.(σ² .+ ϵ)
λ.(γ .* x̂ .+ β)
end
end

children(in::InstanceNorm) =
(in.λ, in.β, in.γ, in.μ, in.σ², in.ϵ, in.momentum, in.active)

mapchildren(f, in::InstanceNorm) = # e.g. mapchildren(cu, in)
InstanceNorm(in.λ, f(in.β), f(in.γ), f(in.μ), f(in.σ²), in.ϵ, in.momentum, in.active)

_testmode!(in::InstanceNorm, test) = (in.active = !test)

function Base.show(io::IO, l::InstanceNorm)
print(io, "InstanceNorm($(join(size(l.β), ", "))")
(l.λ == identity) || print(io, ", λ = $(l.λ)")
print(io, ")")
end
96 changes: 96 additions & 0 deletions test/layers/normalisation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -104,3 +104,99 @@ end
@test (@allocated m(x)) < 100_000_000
end
end


@testset "InstanceNorm" begin
# helper functions
expand_inst = (x, as) -> reshape(repeat(x, outer=[1, as[length(as)]]), as...)
# begin tests
let m = InstanceNorm(2), sizes = (3, 2, 2),
x = param(reshape(collect(1:prod(sizes)), sizes))

@test m.β.data == [0, 0] # initβ(2)
@test m.γ.data == [1, 1] # initγ(2)

@test m.active

m(x)

#julia> x
#[:, :, 1] =
# 1.0 4.0
# 2.0 5.0
# 3.0 6.0
#
#[:, :, 2] =
# 7.0 10.0
# 8.0 11.0
# 9.0 12.0
#
# μ will be
# (1. + 2. + 3.) / 3 = 2.
# (4. + 5. + 6.) / 3 = 5.
#
# (7. + 8. + 9.) / 3 = 8.
# (10. + 11. + 12.) / 3 = 11.
#
# ∴ update rule with momentum:
# (1. - .1) * 0 + .1 * (2. + 8.) / 2 = .5
# (1. - .1) * 0 + .1 * (5. + 11.) / 2 = .8
@test m.μ ≈ [0.5, 0.8]
# momentum * var * num_items / (num_items - 1) + (1 - momentum) * sigma_sq
# julia> reshape(mean(.1 .* var(x.data, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1.
# 2-element Array{Float64,1}:
# 1.
# 1.
@test m.σ² ≈ reshape(mean(.1 .* var(x.data, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1.

testmode!(m)
@test !m.active

x′ = m(x).data
@test isapprox(x′[1], (1 - 0.5) / sqrt(1. + 1f-5), atol = 1.0e-5)
end
# with activation function
let m = InstanceNorm(2, sigmoid), sizes = (3, 2, 2),
x = param(reshape(collect(1:prod(sizes)), sizes))

affine_shape = collect(sizes)
affine_shape[1] = 1

@test m.active
m(x)

testmode!(m)
@test !m.active

y = m(x).data
@test isapprox(y, data(sigmoid.((x .- expand_inst(m.μ, affine_shape)) ./ sqrt.(expand_inst(m.σ², affine_shape) .+ m.ϵ))), atol = 1.0e-7)
end

let m = InstanceNorm(2), sizes = (2, 4, 1, 2, 3),
x = param(reshape(collect(1:prod(sizes)), sizes))
y = reshape(permutedims(x, [3, 1, 2, 4, 5]), :, 2, 3)
y = reshape(m(y), sizes...)
@test m(x) == y
end

# check that μ, σ², and the output are the correct size for higher rank tensors
let m = InstanceNorm(2), sizes = (5, 5, 3, 4, 2, 6),
x = param(reshape(collect(1:prod(sizes)), sizes))
y = m(x)
@test size(m.μ) == (sizes[end - 1], )
@test size(m.σ²) == (sizes[end - 1], )
@test size(y) == sizes
end

# show that instance norm is equal to batch norm when channel and batch dims are squashed
let m_inorm = InstanceNorm(2), m_bnorm = BatchNorm(12), sizes = (5, 5, 3, 4, 2, 6),
x = param(reshape(collect(1:prod(sizes)), sizes))
@test m_inorm(x) == reshape(m_bnorm(reshape(x, (sizes[1:end - 2]..., :, 1))), sizes)
end

let m = InstanceNorm(32), x = randn(Float32, 416, 416, 32, 1);
m(x)
@test (@allocated m(x)) < 100_000_000
end

end