Skip to content

Commit

Permalink
Merge pull request #171 from darsnack/efficient-net
Browse files Browse the repository at this point in the history
  • Loading branch information
darsnack authored Jun 25, 2022
2 parents 07ad654 + a3f44c8 commit 099c1a5
Show file tree
Hide file tree
Showing 5 changed files with 185 additions and 6 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
| [MobileNetv1](https://arxiv.org/abs/1704.04861) | [`MobileNetv1`](https://fluxml.ai/Metalhead.jl/dev/docstrings/Metalhead.MobileNetv1.html) | N |
| [MobileNetv2](https://arxiv.org/abs/1801.04381) | [`MobileNetv2`](https://fluxml.ai/Metalhead.jl/dev/docstrings/Metalhead.MobileNetv2.html) | N |
| [MobileNetv3](https://arxiv.org/abs/1905.02244) | [`MobileNetv3`](https://fluxml.ai/Metalhead.jl/dev/docstrings/Metalhead.MobileNetv3.html) | N |
| [EfficientNet](https://arxiv.org/abs/1905.11946) | [`EfficientNet`](https://fluxml.ai/Metalhead.jl/dev/docstrings/Metalhead.EfficientNet.html) | N |
| [MLPMixer](https://arxiv.org/pdf/2105.01601) | [`MLPMixer`](https://fluxml.ai/Metalhead.jl/dev/docstrings/Metalhead.MLPMixer.html) | N |
| [ResMLP](https://arxiv.org/abs/2105.03404) | [`ResMLP`](https://fluxml.ai/Metalhead.jl/dev/docstrings/Metalhead.ResMLP.html) | N |
| [gMLP](https://arxiv.org/abs/2105.08050) | [`gMLP`](https://fluxml.ai/Metalhead.jl/dev/docstrings/Metalhead.gMLP.html) | N |
Expand Down
3 changes: 2 additions & 1 deletion src/Metalhead.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ include("convnets/resnext.jl")
include("convnets/densenet.jl")
include("convnets/squeezenet.jl")
include("convnets/mobilenet.jl")
include("convnets/efficientnet.jl")
include("convnets/convnext.jl")
include("convnets/convmixer.jl")

Expand All @@ -42,7 +43,7 @@ export AlexNet, VGG, VGG11, VGG13, VGG16, VGG19,
ResNet, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, ResNeXt,
DenseNet, DenseNet121, DenseNet161, DenseNet169, DenseNet201,
GoogLeNet, Inception3, Inceptionv3, Inceptionv4, InceptionResNetv2, Xception,
SqueezeNet, MobileNetv1, MobileNetv2, MobileNetv3,
SqueezeNet, MobileNetv1, MobileNetv2, MobileNetv3, EfficientNet,
MLPMixer, ResMLP, gMLP,
ViT,
ConvMixer, ConvNeXt
Expand Down
156 changes: 156 additions & 0 deletions src/convnets/efficientnet.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
"""
efficientnet(scalings, block_config;
inchannels = 3, nclasses = 1000, max_width = 1280)
Create an EfficientNet model ([reference](https://arxiv.org/abs/1905.11946v5)).
# Arguments
- `scalings`: global width and depth scaling (given as a tuple)
- `block_config`: configuration for each inverted residual block,
given as a vector of tuples with elements:
- `n`: number of block repetitions (will be scaled by global depth scaling)
- `k`: kernel size
- `s`: kernel stride
- `e`: expansion ratio
- `i`: block input channels (will be scaled by global width scaling)
- `o`: block output channels (will be scaled by global width scaling)
- `inchannels`: number of input channels
- `nclasses`: number of output classes
- `max_width`: maximum number of output channels before the fully connected
classification blocks
"""
function efficientnet(scalings, block_config;
inchannels = 3, nclasses = 1000, max_width = 1280)
wscale, dscale = scalings
scalew(w) = wscale 1 ? w : ceil(Int64, wscale * w)
scaled(d) = dscale 1 ? d : ceil(Int64, dscale * d)

out_channels = _round_channels(scalew(32), 8)
stem = conv_bn((3, 3), inchannels, out_channels, swish;
bias = false, stride = 2, pad = SamePad())

blocks = []
for (n, k, s, e, i, o) in block_config
in_channels = _round_channels(scalew(i), 8)
out_channels = _round_channels(scalew(o), 8)
repeats = scaled(n)

push!(blocks,
invertedresidual(k, in_channels, in_channels * e, out_channels, swish;
stride = s, reduction = 4))
for _ in 1:(repeats - 1)
push!(blocks,
invertedresidual(k, out_channels, out_channels * e, out_channels, swish;
stride = 1, reduction = 4))
end
end
blocks = Chain(blocks...)

head_out_channels = _round_channels(max_width, 8)
head = conv_bn((1, 1), out_channels, head_out_channels, swish;
bias = false, pad = SamePad())

top = Dense(head_out_channels, nclasses)

return Chain(Chain([stem..., blocks, head...]),
Chain(AdaptiveMeanPool((1, 1)), MLUtils.flatten, top))
end

# n: # of block repetitions
# k: kernel size k x k
# s: stride
# e: expantion ratio
# i: block input channels
# o: block output channels
const efficientnet_block_configs = [
# (n, k, s, e, i, o)
(1, 3, 1, 1, 32, 16),
(2, 3, 2, 6, 16, 24),
(2, 5, 2, 6, 24, 40),
(3, 3, 2, 6, 40, 80),
(3, 5, 1, 6, 80, 112),
(4, 5, 2, 6, 112, 192),
(1, 3, 1, 6, 192, 320)
]

# w: width scaling
# d: depth scaling
# r: image resolution
const efficientnet_global_configs = Dict(
# ( r, ( w, d))
:b0 => (224, (1.0, 1.0)),
:b1 => (240, (1.0, 1.1)),
:b2 => (260, (1.1, 1.2)),
:b3 => (300, (1.2, 1.4)),
:b4 => (380, (1.4, 1.8)),
:b5 => (456, (1.6, 2.2)),
:b6 => (528, (1.8, 2.6)),
:b7 => (600, (2.0, 3.1)),
:b8 => (672, (2.2, 3.6))
)

struct EfficientNet
layers::Any
end

"""
EfficientNet(scalings, block_config;
inchannels = 3, nclasses = 1000, max_width = 1280)
Create an EfficientNet model ([reference](https://arxiv.org/abs/1905.11946v5)).
See also [`efficientnet`](#).
# Arguments
- `scalings`: global width and depth scaling (given as a tuple)
- `block_config`: configuration for each inverted residual block,
given as a vector of tuples with elements:
- `n`: number of block repetitions (will be scaled by global depth scaling)
- `k`: kernel size
- `s`: kernel stride
- `e`: expansion ratio
- `i`: block input channels (will be scaled by global width scaling)
- `o`: block output channels (will be scaled by global width scaling)
- `inchannels`: number of input channels
- `nclasses`: number of output classes
- `max_width`: maximum number of output channels before the fully connected
classification blocks
"""
function EfficientNet(scalings, block_config;
inchannels = 3, nclasses = 1000, max_width = 1280)
layers = efficientnet(scalings, block_config;
inchannels = inchannels,
nclasses = nclasses,
max_width = max_width)
return EfficientNet(layers)
end

@functor EfficientNet

(m::EfficientNet)(x) = m.layers(x)

backbone(m::EfficientNet) = m.layers[1]
classifier(m::EfficientNet) = m.layers[2]

"""
EfficientNet(name::Symbol; pretrain = false)
Create an EfficientNet model ([reference](https://arxiv.org/abs/1905.11946v5)).
See also [`efficientnet`](#).
# Arguments
- `name`: name of default configuration
(can be `:b0`, `:b1`, `:b2`, `:b3`, `:b4`, `:b5`, `:b6`, `:b7`, `:b8`)
- `pretrain`: set to `true` to load the pre-trained weights for ImageNet
"""
function EfficientNet(name::Symbol; pretrain = false)
@assert name in keys(efficientnet_global_configs)
"`name` must be one of $(sort(collect(keys(efficientnet_global_configs))))"

model = EfficientNet(efficientnet_global_configs[name][2], efficientnet_block_configs)
pretrain && loadpretrain!(model, string("efficientnet-", name))

return model
end
25 changes: 23 additions & 2 deletions test/convnets.jl
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,27 @@ end
GC.safepoint()
GC.gc()

@testset "EfficientNet" begin
@testset "EfficientNet($name)" for name in [:b0, :b1, :b2, :b3, :b4] #, :b5, :b6, :b7, :b8]
# preferred image resolution scaling
r = Metalhead.efficientnet_global_configs[name][1]
x = rand(Float32, r, r, 3, 1)
m = EfficientNet(name)
@test size(m(x)) == (1000, 1)
if (EfficientNet, name) in PRETRAINED_MODELS
@test acctest(EfficientNet(name, pretrain = true))
else
@test_throws ArgumentError EfficientNet(name, pretrain = true)
end
@test gradtest(m, x)
GC.safepoint()
GC.gc()
end
end

GC.safepoint()
GC.gc()

@testset "GoogLeNet" begin
m = GoogLeNet()
@test size(m(x_224)) == (1000, 1)
Expand Down Expand Up @@ -215,7 +236,7 @@ GC.safepoint()
GC.gc()

@testset "ConvNeXt" verbose = true begin
@testset for mode in [:small, :base, :large] # :tiny, #, :xlarge]
@testset for mode in [:small, :base] #, :large # :tiny, #, :xlarge]
@testset for drop_path_rate in [0.0, 0.5]
m = ConvNeXt(mode; drop_path_rate)
@test size(m(x_224)) == (1000, 1)
Expand All @@ -230,7 +251,7 @@ GC.safepoint()
GC.gc()

@testset "ConvMixer" verbose = true begin
@testset for mode in [:small, :base, :large]
@testset for mode in [:small, :base] #, :large]
m = ConvMixer(mode)

@test size(m(x_224)) == (1000, 1)
Expand Down
6 changes: 3 additions & 3 deletions test/other.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
@testset "MLPMixer" begin
@testset for mode in [:small, :base, :large] # :huge]
@testset for mode in [:small, :base] # :large, # :huge]
@testset for drop_path_rate in [0.0, 0.5]
m = MLPMixer(mode; drop_path_rate)
@test size(m(x_224)) == (1000, 1)
Expand All @@ -11,7 +11,7 @@
end

@testset "ResMLP" begin
@testset for mode in [:small, :base, :large] # :huge]
@testset for mode in [:small, :base] # :large, # :huge]
@testset for drop_path_rate in [0.0, 0.5]
m = ResMLP(mode; drop_path_rate)
@test size(m(x_224)) == (1000, 1)
Expand All @@ -23,7 +23,7 @@ end
end

@testset "gMLP" begin
@testset for mode in [:small, :base, :large] # :huge]
@testset for mode in [:small, :base] # :large, # :huge]
@testset for drop_path_rate in [0.0, 0.5]
m = gMLP(mode; drop_path_rate)
@test size(m(x_224)) == (1000, 1)
Expand Down

0 comments on commit 099c1a5

Please sign in to comment.