-
-
Notifications
You must be signed in to change notification settings - Fork 24
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add destructure
, take II
#54
Changes from all commits
f7c1a7f
5a18607
b70875f
e325f66
c686fc5
520efbe
af14f84
6f3eefa
17b57f0
337f365
756b450
d95a147
65e136e
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
|
||
using ChainRulesCore: ChainRulesCore, NoTangent, ProjectTo, unthunk | ||
const NoT = NoTangent() | ||
|
||
""" | ||
destructure(model) -> vector, reconstructor | ||
|
||
Copies all [`trainable`](@ref), [`isnumeric`](@ref) parameters in the model | ||
to a vector, and returns also a function which reverses this transformation. | ||
Differentiable. | ||
|
||
# Example | ||
```jldoctest | ||
julia> v, re = destructure((x=[1.0, 2.0], y=(sin, [3 + 4im]))) | ||
(ComplexF64[1.0 + 0.0im, 2.0 + 0.0im, 3.0 + 4.0im], Restructure(NamedTuple, ..., 3)) | ||
|
||
julia> re([3, 5-im, 7+11im]) | ||
(x = [3.0, 5.0], y = (sin, ComplexF64[7.0 + 11.0im])) | ||
``` | ||
""" | ||
function destructure(x) | ||
flat, off, len = _flatten(x) | ||
flat, Restructure(x, off, len) | ||
end | ||
|
||
""" | ||
Restructure(Model, ..., length) | ||
|
||
This is what [`destructure`](@ref) returns, and `re(p)` will re-build the model with | ||
new parameters from vector `p`. If the model is callable, then `re(x, p) == re(p)(x)`. | ||
|
||
# Example | ||
```julia | ||
julia> using Flux, Optimisers | ||
|
||
julia> _, re = destructure(Dense([1 2; 3 4], [0, 0], sigmoid)) | ||
([1, 3, 2, 4, 0, 0], Restructure(Dense, ..., 6)) | ||
|
||
julia> m = re(-4:1) | ||
Dense(2, 2, σ) # 6 parameters | ||
|
||
julia> m([0.2, 0.3]) ≈ re([0.2, 0.3], -4:1) | ||
true | ||
``` | ||
""" | ||
struct Restructure{T,S} | ||
model::T | ||
offsets::S | ||
length::Int | ||
end | ||
(re::Restructure)(flat::AbstractVector) = _rebuild(re.model, re.offsets, flat, re.length) | ||
(re::Restructure)(x, flat::AbstractVector) = re(flat)(x) | ||
Base.show(io::IO, re::Restructure{T}) where T = print(io, "Restructure(", T.name.name, ", ..., ", re.length, ")") | ||
Base.length(re::Restructure) = re.length | ||
|
||
# This flattens a model, and returns a web of offsets for later use: | ||
function _flatten(x) | ||
isnumeric(x) && return vcat(_vec(x)), 0, length(x) # trivial case | ||
arrays = AbstractVector[] | ||
len = Ref(0) | ||
off = fmap(x; exclude = isnumeric, walk = (f, z) -> map(f, _trainable(z))) do y | ||
push!(arrays, _vec(y)) | ||
o = len[] | ||
len[] = o + length(y) | ||
o | ||
end | ||
reduce(vcat, arrays), off, len[] | ||
end | ||
|
||
_vec(x::Number) = LinRange(x,x,1) | ||
_vec(x::AbstractArray) = vec(x) | ||
|
||
function ChainRulesCore.rrule(::typeof(_flatten), x) | ||
flat, off, len = _flatten(x) | ||
_maybewarn() | ||
_flatten_back((dflat, _, _)) = (NoT, _rebuild(x, off, unthunk(dflat), len; walk = _Tangent_biwalk, prune = NoT)) | ||
(flat, off, len), _flatten_back | ||
end | ||
|
||
# This reconstructs either a model like x, or a gradient for it: | ||
function _rebuild(x, off, flat::AbstractVector, len = length(flat); walk = _trainable_biwalk, kw...) | ||
len == length(flat) || throw(DimensionMismatch("Rebuild expected a vector of length $len, got $(length(flat))")) | ||
fmap(x, off; exclude = isnumeric, walk, kw...) do y, o | ||
_getat(y, o, flat) | ||
end | ||
end | ||
|
||
_getat(y::Number, o::Int, flat::AbstractVector) = ProjectTo(y)(flat[o + 1]) | ||
_getat(y::AbstractArray, o::Int, flat::AbstractVector) = | ||
ProjectTo(y)(reshape(flat[o .+ (1:length(y))], axes(y))) # ProjectTo is just correcting eltypes | ||
|
||
function _trainable_biwalk(f, x, aux) | ||
ch, re = functor(typeof(x), x) | ||
au, _ = functor(typeof(x), aux) | ||
_trainmap(f, ch, _trainable(x), au) |> re | ||
end | ||
|
||
function _trainmap(f, ch, tr, aux) | ||
map(ch, tr, aux) do c, t, a # isnothing(t) indicates non-trainable field, safe given isnumeric(c) | ||
isnothing(t) ? c : f(t, a) | ||
end | ||
end | ||
|
||
function _Tangent_biwalk(f, x, aux) # use with prune = NoT | ||
ch, re = functor(typeof(x), x) | ||
au, _ = functor(typeof(x), aux) | ||
y = _trainmap(f, ch, _trainable(x), au) | ||
y isa Tuple{} && return NoT | ||
p = ProjectTo(x) | ||
if p isa ProjectTo # e.g. Array, NamedTuple | ||
p(y) | ||
else # p === identity for unknown structs | ||
Tangent{typeof(x), typeof(y)}(y) | ||
end | ||
end | ||
|
||
function ChainRulesCore.rrule(::typeof(_rebuild), x, off, flat, len; kw...) | ||
_rebuild_back(dx) = (NoT, NoT, NoT, _grad!(x, unthunk(dx), off, _zero(flat)), NoT) | ||
_rebuild(x, off, flat, len; kw...), _rebuild_back | ||
end | ||
|
||
_zero(x) = map!(zero, similar(x, float(eltype(x))), x) # mutable zero array for _grad! | ||
ChainRulesCore.@non_differentiable _zero(x) | ||
|
||
# This is the gradient of model reconstruction, accumulating duplicates: | ||
function _grad!(x, dx, off, flat::AbstractVector) | ||
x′, _ = functor(typeof(x), x) | ||
dx′, _ = functor(typeof(x), base(dx)) | ||
off′, _ = functor(typeof(x), off) | ||
foreach((xᵢ, dxᵢ, oᵢ) -> _grad!(xᵢ, dxᵢ, oᵢ, flat), x′, dx′, off′) | ||
flat | ||
end | ||
function _grad!(x, dx, off::Integer, flat::AbstractVector) | ||
@views flat[off .+ (1:length(x))] .+= dx # must visit all tied nodes | ||
flat | ||
end | ||
_grad!(x, dx::Zero, off, flat::AbstractVector) = dx | ||
_grad!(x, dx::Zero, off::Integer, flat::AbstractVector) = dx # ambiguity | ||
|
||
# These are only needed for 2nd derivatives: | ||
function ChainRulesCore.rrule(::typeof(_grad!), x, dx, off, flat) | ||
@warn "second derivatives of Restructure may not work yet, sorry!" maxlog=3 | ||
_grad_back(dflat) = (NoT, NoT, _rebuild(x, off, unthunk(dflat); walk = _Tangent_biwalk, prune = NoT), NoT, NoT) | ||
_grad!(x, dx, off, flat), _grad_back | ||
end | ||
base(dx::Tangent{<:Tangent}) = backing(dx).backing # might be needed for gradient(gradient(destructure)) | ||
base(dx::Tangent{Any, <:NamedTuple{(:backing,)}}) = base(backing(dx).backing) # Zygote version | ||
_maybewarn() = nothing | ||
function ChainRulesCore.rrule(::typeof(_maybewarn)) | ||
@warn "second derivatives of destructure may not work yet, sorry!" maxlog=3 | ||
nothing, _ -> (NoT,) | ||
end |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
|
||
m1 = collect(1:3.0) | ||
m2 = (collect(1:3.0), collect(4:6.0)) | ||
m3 = (x = m1, y = sin, z = collect(4:6.0)) | ||
m4 = (x = m1, y = m1, z = collect(4:6.0)) # tied | ||
m5 = (a = (m3, true), b = (m1, false), c = (m4, true)) | ||
m6 = (a = m1, b = [4.0 + im], c = m1) | ||
m7 = TwoThirds((sin, collect(1:3.0)), (cos, collect(4:6.0)), (tan, collect(7:9.0))) | ||
m8 = [Foo(m1, m1), (a = true, b = Foo([4.0], false), c = ()), [[5.0]]] | ||
|
||
@testset "flatten & rebuild" begin | ||
@test destructure(m1)[1] isa Vector{Float64} | ||
@test destructure(m1)[1] == 1:3 | ||
@test destructure(m2)[1] == 1:6 | ||
@test destructure(m3)[1] == 1:6 | ||
@test destructure(m4)[1] == 1:6 | ||
@test destructure(m5)[1] == vcat(1:6, 4:6) | ||
@test destructure(m6)[1] == vcat(1:3, 4 + im) | ||
|
||
@test destructure(m1)[2](7:9) == [7,8,9] | ||
@test destructure(m2)[2](4:9) == ([4,5,6], [7,8,9]) | ||
@test destructure(m3)[2](4:9) == (x = [4,5,6], y = sin, z = [7,8,9]) | ||
m4′ = destructure(m4)[2](4:9) | ||
@test m4′ == (x = [4,5,6], y = [4,5,6], z = [7,8,9]) | ||
@test m4′.x === m4′.y | ||
m5′ = destructure(m5)[2](reverse(1:9)) | ||
@test m5′.a[1].x === m5′.b[1] | ||
@test m5′.b[2] === false | ||
m6′ = destructure(m6)[2]((4:7) .+ (1:4) .* im) | ||
@test m6′.a isa Vector{Float64} | ||
@test m6′.a == 4:6 | ||
@test m6′.a === m6′.c | ||
@test m6′.b == [7 + 4im] | ||
|
||
# struct, trainable | ||
@test destructure(m7)[1] == 1:3 | ||
m7′ = destructure(m7)[2]([10,20,30]) | ||
@test m7′.a == (sin, [10,20,30]) | ||
@test m7′.b == (cos, [4,5,6]) | ||
@test m7′.c == (tan, [7,8,9]) | ||
|
||
@test destructure(m8)[1] == 1:5 | ||
m8′ = destructure(m8)[2](1:5) | ||
@test m8′[1].x === m8′[1].y | ||
@test m8′[2].b.y === false | ||
@test m8′[3][1] == [5.0] | ||
|
||
# errors | ||
@test_throws Exception destructure(m7)[2]([10,20]) | ||
@test_throws Exception destructure(m7)[2]([10,20,30,40]) | ||
end | ||
|
||
@testset "gradient of flatten" begin | ||
@test gradient(m -> destructure(m)[1][1], m1)[1] == [1,0,0] | ||
@test gradient(m -> destructure(m)[1][2], m2)[1] == ([0,1,0], [0,0,0]) | ||
@test gradient(m -> destructure(m)[1][3], (m1, m1))[1] == ([0,0,1], nothing) | ||
@test gradient(m -> destructure(m)[1][1], m3)[1] == (x = [1,0,0], y = nothing, z = [0,0,0]) | ||
@test gradient(m -> destructure(m)[1][2], m4)[1] == (x = [0,1,0], y = nothing, z = [0,0,0]) | ||
|
||
g5 = gradient(m -> destructure(m)[1][3], m5)[1] | ||
@test g5.a[1].x == [0,0,1] | ||
@test g5.a[2] === nothing | ||
|
||
g6 = gradient(m -> imag(destructure(m)[1][4]), m6)[1] | ||
@test g6.a == [0,0,0] | ||
@test g6.a isa Vector{Float64} | ||
@test g6.b == [0+im] | ||
|
||
g8 = gradient(m -> sum(abs2, destructure(m)[1]), m8)[1] | ||
@test g8[1].x == [2,4,6] | ||
@test g8[2].b.x == [8] | ||
@test g8[3] == [[10.0]] | ||
|
||
@testset "second derivative" begin | ||
@test gradient([1,2,3.0]) do v | ||
sum(abs2, gradient(m -> sum(abs2, destructure(m)[1]), (v, [4,5,6.0]))[1][1]) | ||
end[1] ≈ [8,16,24] | ||
# With Diffractor, non-leaf _grad!(x, dx, off, flat::AbstractVector) gets double-wrapped dx: | ||
# off = (0, 3), dx = Tangent{Tangent{Tuple{Vector{Float64}, Vector{Float64}}, ... | ||
# until you add explicit double-unwrap: base(dx::Tangent{<:Tangent}) = backing(dx).backing | ||
# With Zygote, instead: | ||
# dx = Tangent{Any}(backing = Tangent{Any}([4.0, 8.0, 12.0], ZeroTangent()),) | ||
|
||
@test gradient([1,2,3.0]) do v | ||
sum(gradient(m -> sum(destructure(m)[1])^3, (v, [4,5,6.0]))[1][1]) | ||
end[1] == [378, 378, 378] | ||
|
||
@test_broken gradient([1,2,3.0]) do v | ||
sum(abs2, gradient(m -> sum(abs2, destructure(m)[1]), (x = v, y = sin, z = [4,5,6.0]))[1][1]) | ||
end[1] ≈ [8,16,24] | ||
# Zygote error in (::typeof(∂(canonicalize)))(Δ::NamedTuple{(:backing,), Tuple{NamedTuple{(:x, :y, :z) | ||
# Diffractor error in perform_optic_transform | ||
end | ||
end | ||
|
||
@testset "gradient of rebuild" begin | ||
re1 = destructure(m1)[2] | ||
@test gradient(x -> re1(x)[1], rand(3))[1] == [1,0,0] | ||
re2 = destructure(m2)[2] | ||
@test gradient(x -> re2(x)[1][2], rand(6))[1] == [0,1,0,0,0,0] | ||
re3 = destructure(m3)[2] | ||
@test gradient(x -> re3(x).x[3], rand(6))[1] == [0,0,1,0,0,0] | ||
@test gradient(x -> re3(x).z[1], rand(6))[1] == [0,0,0,1,0,0] | ||
|
||
re4 = destructure(m4)[2] | ||
@test gradient(x -> re4(x).x[1], rand(6))[1] == [1,0,0,0,0,0] | ||
@test gradient(x -> re4(x).y[2], rand(6))[1] == [0,1,0,0,0,0] | ||
@test gradient(rand(6)) do x | ||
m = re4(x) | ||
m.x[1] + 2*m.y[2] + 3*m.z[3] | ||
end[1] == [1,2,0, 0,0,3] | ||
|
||
re7 = destructure(m7)[2] | ||
@test gradient(x -> re7(x).a[2][3], rand(3))[1] == [0,0,1] | ||
@test gradient(x -> re7(x).b[2][2], rand(3))[1] == [0,0,0] | ||
@test gradient(x -> re7(x).c[2][1], rand(3))[1] == [0,0,0] | ||
|
||
v8, re8 = destructure(m8) | ||
@test gradient(x -> sum(abs2, re8(x)[1].y), v8)[1] == [2,4,6,0,0] | ||
@test gradient(x -> only(sum(re8(x)[3]))^2, v8)[1] == [0,0,0,0,10] | ||
|
||
@testset "second derivative" begin | ||
@test_broken gradient(collect(1:6.0)) do y | ||
sum(abs2, gradient(x -> sum(abs2, re2(x)[1]), y)[1]) | ||
end[1] ≈ [8,16,24,0,0,0] | ||
# ERROR: Need an adjoint for constructor ChainRulesCore.Tangent{Any, Tuple{Vector{Float64}, ChainRulesCore.ZeroTangent}}. Gradient is of type Tuple{Vector{Float64}, Vector{Float64}} | ||
# with Zygote, which can be fixed by: | ||
# Zygote.@adjoint Tangent{T,B}(x::Tuple) where {T,B<:Tuple} = Tangent{T,B}(x), dx -> (dx,) | ||
Comment on lines
+122
to
+128
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think the remaining question on this PR is whether and how much to care about 2nd derivatives. Some work, some don't. I convinced myself there is no bug in the basic logic. But in the details of when to wrap what in a Tangent, or unwrap it for Zygote, there might be bugs, here or upstream. If we want to be pedantic we could make all 2nd derivatives an error, rather than risk any being wrong. Or a warning. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. At least a warning sounds good to me. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done! All warnings are There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Good to go? |
||
|
||
@test_broken gradient(collect(1:6.0)) do y | ||
sum(abs2, gradient(x -> sum(abs2, re3(x).z), y)[1]) | ||
end[1] ≈ [0,0,0,32,40,48] | ||
# Not fixed by this: | ||
# Zygote.@adjoint Tangent{T,B}(x::NamedTuple) where {T,B<:NamedTuple} = Tangent{T,B}(x), dx -> (dx,) | ||
end | ||
end | ||
|
||
@testset "Flux issue 1826" begin | ||
v, re = destructure((x=[1,2.0], y=[3,4,5.0])) | ||
@test gradient(zero(v)) do w | ||
m = re(w) | ||
5 * sum(m.x) + 7 * sum(m[2]) # uses both x and y | ||
end == ([5.0, 5.0, 7.0, 7.0, 7.0],) | ||
# This, using only x, was broken on Flux: | ||
@test gradient(w -> sum(re(w).x), zero(v)) == ([1.0, 1.0, 0.0, 0.0, 0.0],) | ||
|
||
sh = [7,7.0]; | ||
v, re = destructure((x=sh, y=[3.0,4.0], z=sh)) # shared array in the model | ||
@test v == [7, 7, 3, 4] | ||
@test re([1,10,100,1000]) == (x = [1, 10], y = [100, 1000], z = [1, 10]) | ||
|
||
@test gradient(zero(v)) do w | ||
m = re(w) | ||
3 * sum(m.x) + 13 * sum(m.z) # no dependence on y, but two distinct gradient arrays | ||
end == ([16, 16, 0, 0],) # Flux gave ([3.0, 3.0, 13.0, 13.0],) | ||
|
||
@test gradient(zero(v)) do w | ||
m = re(w) | ||
4(sum(m.x) + sum(m.z)) # now two gradients are ===, so it eliminates one | ||
end == ([8,8,0,0],) | ||
|
||
@test gradient(zero(v)) do w | ||
m = re(w) | ||
4(sum(m.x) + sum(m.y)) + 13*sum(m.z) # again two gradients are ===, so it eliminates one | ||
end == ([17,17,4,4],) # Flux gave ([4.0, 4.0, 13.0, 13.0],) | ||
end |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Given these were completely busted most of the time before, I don't think we need to apologize so profusely 😆
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Heh. May as well be friendly!
Also, I think the point is that they ought to work, the structure does allow for them. Just it has bugs right now.