Skip to content

Training cooperative behaviour in Ghosts to capture Pac-Man using multi-agent deep reinforcement learning

License

Notifications You must be signed in to change notification settings

FranklinLeong/death-to-pacman

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

78 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Death to Pac-Man: Ghost Revolution with Multi-agent Deep Reinforcement Learning

This project focuses on using the multi-agent deep deterministic policy gradient (MADDPG) algorithm in a novel use case — training the ghosts in the game of Pac-Man to capture Pac-Man.

Prerequisites

  1. Python 3 and higher.

Getting started

  • To install, run pip install -r requirements.txt
  • To begin training with GUI, run python train.py --display

Usage

Command-line option Purpose
--max-episode-len Maximum length of each episode (default: 100)
--num-episodes Total number of training episodes (default: 200000)
--num-adversaries Number of ghost agents in the environment (default: 2)
--good-policy Algorithm used for Pac-Man agent (default: ddpg, options: ddpg or maddpg)
--adv-policy Algorithm used for Ghost agents (default: maddpg, options: ddpg or maddpg)
--lr Learning rate for Adam optimizer (default: 1e-2)
--gamma Discount factor (default: 0.95)
--batch-size Batch size (default: 1024)
--save-dir Directory where training state and model will be saved (default: "./save_files/")
--save-rate Model is saved every x episodes (default: 1000)
--restore Restore training from last training checkpoint (default: False)
--display Displays the GUI (default: False)
--load-dir Directory where training state and model are loaded from (default: "")
--load Only loads model if this is set to True (default: False)
--load-episode Loads a model tagged to a particular episode (default: 0)
--layout Selects the game map (default: smallClassic)
--pacman_obs_type Observation space for Pac-Man agent (default: partial_obs, options: partial_obs or full_obs)
--ghost_obs_type Observation space for Ghost agents (default: full_obs, options: partial_obs or full_obs)
--partial_obs_range Range for partial observation space, if chosen (default: 3) e.g. 3x3, 5x5, 7x7...
--shared_obs Include same features in observation spaces of both Pac-Man and Ghost agents (default: False)
--astarSearch Factor step distance between Pac-Man and Ghost into reward and observation of agents (default: False)
--astartAlpha Multiplier for penalizing/rewarding agents using increase/decrease in step distance (default: 1)

Authors

License

This project is licensed under the MIT License - see LICENSE for details

Acknowledgements

About

Training cooperative behaviour in Ghosts to capture Pac-Man using multi-agent deep reinforcement learning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%