-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_vq_general.py
227 lines (185 loc) · 9.2 KB
/
train_vq_general.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import json
import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import models.vqvae as vqvae
import utils.losses as losses
import options.option_vq as option_vq
import utils.utils_model as utils_model
from dataset import dataset_VQ, dataset_TM_eval
import utils.eval_trans as eval_trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
warnings.filterwarnings('ignore')
from utils.word_vectorizer import WordVectorizer
from tqdm import tqdm
from exit.utils import get_model, generate_src_mask, init_save_folder
from models.vqvae_general import VQVAE_decode,VQVAE_decode_speed
from models.vqvae_multi import VQVAE_MULTI
def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):
current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
for param_group in optimizer.param_groups:
param_group["lr"] = current_lr
return optimizer, current_lr
##### ---- Exp dirs ---- #####
args = option_vq.get_args_parser()
torch.manual_seed(args.seed)
torch.cuda.set_device(0)
# args.codebook_dir = os.path.join(args.out_dir, f'codebook',args.codebook_name)
args.out_dir = os.path.join(args.out_dir, f'vq') # /{args.exp_name}
# os.makedirs(args.out_dir, exist_ok = True)
init_save_folder(args)
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
w_vectorizer = WordVectorizer('./glove', 'our_vab')
if args.dataname == 'kit' :
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'
args.nb_joints = 21
else :
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
args.nb_joints = 22
logger.info(f'Training on {args.dataname}, motions are with {args.nb_joints} joints')
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
### ---- Dataloader ---- #####
train_loader = dataset_VQ.DATALoader(args.dataname,
args.batch_size,
window_size=args.window_size,
unit_length=2**args.down_t)
train_loader_iter = dataset_VQ.cycle(train_loader)
val_loader = dataset_TM_eval.DATALoader(args.dataname, False,
32,
w_vectorizer,
unit_length=2**args.down_t)
##### ---- Network ---- #####
if args.teacher_pth:
teacher_net= VQVAE_MULTI(args, ## use args to define different parameters in different quantizers
args.nb_code,#8192
args.code_dim,#32
args.down_t,#2
args.stride_t,#2
args.width,#512
args.depth,#3
args.dilation_growth_rate,#3
args.vq_act,#'relu'
None,#None
{'mean': torch.from_numpy(val_loader.dataset.mean).cuda().float(),
'std': torch.from_numpy(val_loader.dataset.std).cuda().float()},
True)
logger.info('loading checkpoint from {}'.format(args.teacher_pth))
teacher_ckpt=torch.load(args.teacher_pth, map_location='cpu')
teacher_net.load_state_dict(teacher_ckpt['net'], strict=True)
teacher_net.cuda()
teacher_net.eval()
if args.wo_trajectory:
net = VQVAE_decode_speed(args, ## use args to define different parameters in different quantizers
teacher_net,
args.nb_code,#8192
args.code_dim,#32
args.down_t,#2
args.width,#512
args.depth,#3
args.dilation_growth_rate,#3
args.vq_act,#'relu'
None,#None
condition_dim=8
)
else:
net= VQVAE_decode(args, ## use args to define different parameters in different quantizers
teacher_net,
args.nb_code,#8192
args.code_dim,#32
args.down_t,#2
args.stride_t,#2
args.width,#512
args.depth,#3
args.dilation_growth_rate,#3
args.vq_act,#'relu'
None,#None
)
if args.resume_pth :
logger.info('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
#net = torch.nn.DataParallel(net)
net.train()
net.cuda()
##### ---- Optimizer & Scheduler ---- #####
optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
Loss = losses.ReConsLoss(args.recons_loss, args.nb_joints)
##### ------ warm-up ------- #####
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
for nb_iter in tqdm(range(1, args.warm_up_iter)):
optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr)
gt_motion = next(train_loader_iter)
gt_motion = gt_motion.cuda().float() # (bs, 64, dim)
if args.wo_trajectory:
speed = gt_motion[:,:,1:3].reshape(gt_motion.shape[0],-1,8)
gt_motion[:,:,1:3] = 0.
pred_motion = net(gt_motion,speed)
else:
pred_motion = net(gt_motion)
loss_motion = Loss(pred_motion, gt_motion)
loss_vel = Loss.forward_joint(pred_motion, gt_motion)
# loss = loss_motion + args.commit * loss + args.loss_vel * loss_vel
loss = loss_motion + args.loss_vel * loss_vel
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_recons += loss_motion.item()
# avg_perplexity += perplexity.item()
# avg_commit += loss.item()
if nb_iter % args.print_iter == 0 :
avg_recons /= args.print_iter
# avg_perplexity /= args.print_iter
# avg_commit /= args.print_iter
logger.info(f"Warmup. Iter {nb_iter} : lr {current_lr:.5f} \t Recons. {avg_recons:.5f}")
# logger.info(f"Warmup. Iter {nb_iter} : lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
# avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
avg_recons=0.
##### ---- Training ---- #####
# avg_recons, avg_perplexity, avg_commit,avg_classification = 0., 0., 0.,0.
avg_recons = 0.
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper,wo_trajectory=args.wo_trajectory,is_decoder=True)
for nb_iter in tqdm(range(1, args.total_iter + 1)):
#[256,64,263]
gt_motion = next(train_loader_iter)
gt_motion = gt_motion.cuda().float() # bs, nb_joints, joints_dim, seq_len
gt_idx = None
if args.wo_trajectory:
speed = gt_motion[:,:,1:3].reshape(gt_motion.shape[0],-1,8)
gt_motion[:,:,1:3] = 0.
pred_motion = net(gt_motion,speed)
else:
pred_motion = net(gt_motion)
loss_motion = Loss(pred_motion, gt_motion)
loss_vel = Loss.forward_joint(pred_motion, gt_motion)
# loss = loss_motion + args.commit * (commit_loss+classification_loss) + args.loss_vel * loss_vel
loss = loss_motion + args.loss_vel * loss_vel
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
avg_recons += loss_motion.item()
# avg_perplexity += perplexity.item()
# avg_commit += commit_loss.item()
# avg_classification += classification_loss.item()
if nb_iter % args.print_iter == 0 :
avg_recons /= args.print_iter
avg_perplexity /= args.print_iter
avg_commit /= args.print_iter
writer.add_scalar('./Train/L1', avg_recons, nb_iter)
# writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter)
# writer.add_scalar('./Train/Commit', avg_commit, nb_iter)
# writer.add_scalar('./Train/Classification', avg_classification, nb_iter)
# logger.info(f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}\t Classification. {avg_classification:.5f}")
logger.info(f"Train. Iter {nb_iter} : \t Recons. {avg_recons:.5f}")
# avg_recons, avg_perplexity, avg_commit,avg_classification = 0., 0., 0.,0.
avg_recons=0.
if nb_iter % args.eval_iter==0 :
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper,wo_trajectory=args.wo_trajectory,is_decoder=True)