Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Exposed seeding of LitQA2 read and shuffling #758

Merged
merged 2 commits into from
Dec 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 8 additions & 4 deletions paperqa/agents/task.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,6 +196,7 @@ def __init__(
base_query: QueryRequest | dict | None = None,
base_docs: Docs | dict | None = None,
rewards: Mapping[str, float] = DEFAULT_REWARD_MAPPING,
question_kwargs: Mapping[str, Any] | None = None,
eval_model: LLMModel | str = DEFAULT_EVAL_MODEL_NAME,
**env_kwargs,
):
Expand All @@ -210,23 +211,23 @@ def __init__(
base_docs = Docs(**base_docs)
self._base_docs = base_docs
self._rewards = rewards
self._env_kwargs = env_kwargs
self._question_kwargs = question_kwargs
self._eval_model = eval_model
self._env_kwargs = env_kwargs

def _make_gradable_environment(
self,
ideal: str,
distractors: str | list[str],
question: str,
use_unsure: bool = True,
sources: str | list[str] | None = None,
) -> GradablePaperQAEnvironment:
qa_prompt, evaluation_from_answer = LitQAEvaluation.from_question(
ideal=ideal,
distractors=distractors,
question=question,
use_unsure=use_unsure,
eval_model=self._eval_model,
**(self._question_kwargs or {}),
)
query = self._base_query.model_copy()
query.query = qa_prompt
Expand Down Expand Up @@ -305,11 +306,14 @@ def __init__(
self,
*args,
labbench_dataset: str = DEFAULT_LABBENCH_HF_HUB_NAME,
read_data_kwargs: Mapping[str, Any] | None = None,
split: str | LitQAv2TaskSplit = LitQAv2TaskSplit.EVAL,
**kwargs,
):
super().__init__(*args, **kwargs)
train_df, eval_df = read_litqa_v2_from_hub(labbench_dataset)
train_df, eval_df = read_litqa_v2_from_hub(
labbench_dataset, **(read_data_kwargs or {})
)
split = LitQAv2TaskSplit(split)
if split == LitQAv2TaskSplit.TRAIN:
self.data = train_df
Expand Down
9 changes: 7 additions & 2 deletions paperqa/litqa.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from ast import literal_eval
from collections.abc import Awaitable, Callable, Mapping, Sequence
from enum import StrEnum
from typing import TYPE_CHECKING, Self
from typing import TYPE_CHECKING, Literal, Self

try:
from ldp.utils import discounted_returns
Expand Down Expand Up @@ -92,6 +92,7 @@ def make_mc_options(

DEFAULT_EVAL_MODEL_NAME = "gpt-4-turbo-2024-04-09"
DEFAULT_REWARD_MAPPING = {"correct": 1.0, "unsure": 0.1, "incorrect": -1.0}
SEED_USING_QUESTION: Literal["SEED_USING_QUESTION"] = "SEED_USING_QUESTION" # Sentinel


class LitQAEvaluation(StrEnum):
Expand Down Expand Up @@ -161,7 +162,7 @@ def from_question(
question: str,
use_unsure: bool = True,
eval_model: LLMModel | str = DEFAULT_EVAL_MODEL_NAME,
seed: int | None = None,
seed: int | Literal["SEED_USING_QUESTION"] | None = None,
) -> tuple[str, Callable[[PQASession | str], Awaitable[LitQAEvaluation]]]:
"""
Create a LitQA question and an answer-to-evaluation function.
Expand All @@ -174,11 +175,15 @@ def from_question(
eval_model: Evaluation model to use for multiple choice letter extraction
from a text answer.
seed: Optional seed to use in randomization of multiple choice letters.
Optionally pass in the string literal "SEED_USING_QUESTION" to hash the
input question for the seed.

Returns:
Two-tuple of created LitQA question, function (that can be thought of as
stateless) to use to extract an evaluation result from an answer.
"""
if seed == SEED_USING_QUESTION:
seed = hash(question)
text, ideal_answer, unsure_answer, distractor_answers = make_mc_options(
ideal=ideal,
distractors=distractors,
Expand Down
34 changes: 28 additions & 6 deletions tests/test_litqa.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@

import pytest

from paperqa.litqa import LitQAEvaluation, read_litqa_v2_from_hub
from paperqa.litqa import SEED_USING_QUESTION, LitQAEvaluation, read_litqa_v2_from_hub
from tests.conftest import VCR_DEFAULT_MATCH_ON


Expand Down Expand Up @@ -140,16 +140,38 @@ def test_consistent_mc_options(self) -> None:
"""Tests that creating multiple evaluations with the same seed results in the same prompt."""
question, ideal, distractors = self.MEANING_OF_LIFE_QUESTION_IDEAL_DISTRACTORS

qa_prompt_1, _ = LitQAEvaluation.from_question(
qa_prompt_1a, _ = LitQAEvaluation.from_question(
ideal=ideal, distractors=distractors, question=question, seed=0
)
self._assert_prompt_is_valid(qa_prompt_1, question, ideal, distractors)
self._assert_prompt_is_valid(qa_prompt_1a, question, ideal, distractors)

qa_prompt_2, _ = LitQAEvaluation.from_question(
qa_prompt_1b, _ = LitQAEvaluation.from_question(
ideal=ideal, distractors=distractors, question=question, seed=0
)
self._assert_prompt_is_valid(qa_prompt_1, question, ideal, distractors)
assert qa_prompt_1 == qa_prompt_2
self._assert_prompt_is_valid(qa_prompt_1b, question, ideal, distractors)
assert qa_prompt_1a == qa_prompt_1b, "Same seeding should lead to same prompts"

qa_prompt_2a, _ = LitQAEvaluation.from_question(
ideal=ideal,
distractors=distractors,
question=question,
seed=SEED_USING_QUESTION,
)
self._assert_prompt_is_valid(qa_prompt_2a, question, ideal, distractors)

qa_prompt_2b, _ = LitQAEvaluation.from_question(
ideal=ideal,
distractors=distractors,
question=question,
seed=SEED_USING_QUESTION,
)
self._assert_prompt_is_valid(qa_prompt_2b, question, ideal, distractors)
assert (
qa_prompt_2a == qa_prompt_2b
), "Same seeding strategy should lead to same prompts"
assert (
qa_prompt_2a != qa_prompt_1a
), "Different seeding strategies should lead to different prompts"

def test_creating_litqa_questions(self) -> None:
"""Test making LitQA eval questions after downloading from Hugging Face Hub."""
Expand Down
20 changes: 18 additions & 2 deletions tests/test_task.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
LitQAv2TaskSplit,
)
from paperqa.agents.tools import GenerateAnswer
from paperqa.litqa import DEFAULT_REWARD_MAPPING, LitQAEvaluation
from paperqa.litqa import DEFAULT_REWARD_MAPPING, SEED_USING_QUESTION, LitQAEvaluation


@pytest.fixture(name="base_query_request")
Expand Down Expand Up @@ -103,12 +103,27 @@ async def test___len__(
expected_length: int,
base_query_request: QueryRequest,
) -> None:
task_dataset = LitQAv2TaskDataset(base_query=base_query_request, split=split)
task_dataset = LitQAv2TaskDataset(
base_query=base_query_request,
question_kwargs={"seed": 42},
read_data_kwargs={"seed": 42},
split=split,
)
assert len(task_dataset) == expected_length

# Now let's check we could use the sources in a validation
for i in range(len(task_dataset)):
env = task_dataset.get_new_env_by_idx(i)
if i == 0 and split == LitQAv2TaskSplit.TRAIN:
# Yes this assertion is somewhat brittle, but it reliably
# checks the seeding's behavior so we keep it
obs, _ = await env.reset()
assert (
"Q: SLC14A1 been identified as a specific marker for endothelial"
" cells in which organ?\n\nOptions:\nA) heart\nB) eye\nC)"
" prostate\nD) Insufficient information to answer this question\nE)"
" liver" in (obs[0].content or "")
)
assert env.sources, "Sources need to be accessible"
assert isinstance(
env.sources, Iterable
Expand Down Expand Up @@ -144,6 +159,7 @@ async def test_evaluation(
"deleted_dockeys",
}
),
"question_kwargs": {"seed": SEED_USING_QUESTION},
},
)
# NOTE: set base_query after construction of the TaskConfig. because in
Expand Down
Loading