-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathglmnetPredict.m
262 lines (253 loc) · 9.23 KB
/
glmnetPredict.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
function result = glmnetPredict(object,s)
%--------------------------------------------------------------------------
% glmnetPredict.m: make predictions from a "glmnet" object.
%--------------------------------------------------------------------------
%
% DESCRIPTION:
% Similar to other predict methods, this functions predicts fitted
% values, logits, coefficients and more from a fitted "glmnet" object.
%
% USAGE:
% glmnetPredict(object)
% glmnetPredict(object, type)
% glmnetPredict(object, type, newx)
% glmnetPredict(object, type, newx, s)
%
% INPUT ARGUMENTS:
% fit Fitted "glmnet" model object.
% type Type of prediction required. Type "link" gives the linear
% predictors for "binomial" or "multinomial" models; for
% "gaussian" models it gives the fitted values. Type "response"
% gives the fitted probabilities for "binomial" or
% "multinomial"; for "gaussian" type "response" is equivalent
% to type "link". Type "coefficients" computes the coefficients
% at the requested values for s. Note that for "binomial"
% models, results are returned only for the class corresponding
% to the second level of the factor response. Type "class"
% applies only to "binomial" or "multinomial" models, and
% produces the class label corresponding to the maximum
% probability. Type "nonzero" returns a list of the indices of
% the nonzero coefficients for each value of s.
% newx Matrix of new values for x at which predictions are to be
% made. Must be a matrix; This argument is not used for
% type=c("coefficients","nonzero")
% s Value(s) of the penalty parameter lambda at which predictions
% are required. Default is the entire sequence used to create
% the model.
%
% DETAILS:
% The shape of the objects returned are different for "multinomial"
% objects. glmnetCoef(fit, ...) is equivalent to glmnetPredict(fit, "coefficients", ...)
%
% LICENSE: GPL-2
%
% DATE: 14 Jul 2009
%
% AUTHORS:
% Algorithm was designed by Jerome Friedman, Trevor Hastie and Rob Tibshirani
% Fortran code was written by Jerome Friedman
% R wrapper (from which the MATLAB wrapper was adapted) was written by Trevor Hasite
% MATLAB wrapper was written and maintained by Hui Jiang, jiangh@stanford.edu
% Department of Statistics, Stanford University, Stanford, California, USA.
%
% REFERENCES:
% Friedman, J., Hastie, T. and Tibshirani, R. (2009)
% Regularization Paths for Generalized Linear Models via Coordinate Descent.
% Journal of Statistical Software, 33(1), 2010
%
% SEE ALSO:
% glmnet, glmnetSet, glmnetPrint, glmnetPlot and glmnetCoef methods.
%
% EXAMPLES:
% x=randn(100,20);
% y=randn(100,1);
% g2=randsample(2,100,true);
% g4=randsample(4,100,true);
% fit1=glmnet(x,y);
% glmnetPredict(fit1,'link',x(1:5,:),[0.01,0.005]') % make predictions
% glmnetPredict(fit1,'coefficients')
% fit2=glmnet(x,g2,'binomial');
% glmnetPredict(fit2, 'response', x(2:5,:))
% glmnetPredict(fit2, 'nonzero')
% fit3=glmnet(x,g4,'multinomial');
% glmnetPredict(fit3, 'response', x(1:3,:), 0.01)
%
% DEVELOPMENT:
% 14 Jul 2009: Original version of glmnet.m written.
% 20 Oct 2009: Fixed a bug in bionomial response, pointed out by Ramon
% Casanov from Wake Forest University.
% 26 Jan 2010: Fixed a bug in multinomial link and class, pointed out by
% Peter Rijnbeek from Erasmus University.
% 23 Jun 2010: Fixed a bug in multinomial with s, pointed out by
% Robert Jacobsen from Aalborg University.
% if nargin < 2
% type = 'link';
% end
%
% if nargin < 3
% newx = [];
% end
%
% if nargin < 4
% s = object.lambda;
% end
% if strcmp(object.class, 'elnet')
a0=transpose(object.a0);
nbeta=[a0; object.beta];
% if nargin == 4
lambda=object.lambda;
lamlist=lambda_interp(lambda,s);
nbeta=nbeta(:,lamlist.left).*repmat(lamlist.frac',size(nbeta,1),1) +nbeta(:,lamlist.right).*(1-repmat(lamlist.frac',size(nbeta,1),1));
% end
% if strcmp(type, 'coefficients')
result = nbeta;
% elseif strcmp(type, 'link')
% result = [ones(size(newx,1),1), newx] * nbeta;
% elseif strcmp(type, 'response')
% result = [ones(size(newx,1),1), newx] * nbeta;
% elseif strcmp(type, 'nonzero')
% result = nonzeroCoef(nbeta(2:size(nbeta,1),:), true);
% else
% error('Unrecognized type');
% end
% elseif strcmp(object.class, 'lognet')
%
% a0=transpose(object.a0);
% nbeta=[object.a0; object.beta];
% if nargin == 4
% lambda=object.lambda;
% lamlist=lambda_interp(lambda,s);
% nbeta=nbeta(:,lamlist.left).*repmat(lamlist.frac',size(nbeta,1),1) +nbeta(:,lamlist.right).*(1-repmat(lamlist.frac',size(nbeta,1),1));
% end
% %%% remember that although the fortran lognet makes predictions
% %%% for the first class, we make predictions for the second class
% %%% to avoid confusion with 0/1 responses.
% %%% glmnet flipped the signs of the coefficients
% if strcmp(type,'coefficients')
% result = nbeta;
% elseif strcmp(type,'nonzero')
% result = nonzeroCoef(nbeta(2:size(nbeta,1),:), true);
% else
% nfit = [ones(size(newx,1),1), newx] * nbeta;
%
% if strcmp(type,'response')
% pp=exp(-nfit);
% result = 1./(1+pp);
% elseif strcmp(type,'link')
% result = nfit;
% elseif strcmp(type,'class')
% result = (nfit > 0) * 2 + (nfit <= 0) * 1;
% else
% error('Unrecognized type');
% end
% end
% elseif strcmp(object.class, 'multnet')
% a0=object.a0;
% nbeta=object.beta;
% nclass=size(a0,1);
% nlambda=length(s);
% if nargin == 4
% lambda=object.lambda;
% lamlist=lambda_interp(lambda,s);
% for i=1:nclass
% kbeta=[a0(i,:); nbeta{i}];
% % kbeta=kbeta(:,lamlist.left)*lamlist.frac +kbeta(:,lamlist.right)*(1-lamlist.frac);
% kbeta=kbeta(:,lamlist.left).*repmat(lamlist.frac',size(kbeta,1),1)+kbeta(:,lamlist.right).*(1-repmat(lamlist.frac',size(kbeta,1),1));
% nbeta{i}=kbeta;
% end
% else
% for i=1:nclass
% nbeta{i} = [a0(i,:);nbeta{i}];
% end
% end
% if strcmp(type, 'coefficients')
% result = nbeta;
% elseif strcmp(type, 'nonzero')
% for i=1:nclass
% result{i}=nonzeroCoef(nbeta{i}(2:size(nbeta{i},1),:),true);
% end
% else
% npred=size(newx,1);
% dp = zeros(nclass,nlambda,npred);
% for i=1:nclass
% fitk = [ones(size(newx,1),1), newx] * nbeta{i};
% dp(i,:,:)=dp(i,:,:)+reshape(transpose(fitk),1,nlambda,npred);
% end
% if strcmp(type, 'response')
% pp=exp(dp);
% psum=sum(pp,1);
% result = permute(pp./repmat(psum,nclass,1),[3,1,2]);
% elseif strcmp(type, 'link')
% result=permute(dp,[3,1,2]);
% elseif strcmp(type, 'class')
% dp=permute(dp,[3,1,2]);
% result = [];
% for i=1:size(dp,3)
% result = [result, softmax(dp(:,:,i))];
% end
% else
% error('Unrecognized type');
% end
% end
% else
% error('Unrecognized class');
% end
%-------------------------------------------------------------
% End private function glmnetPredict
%-------------------------------------------------------------
function result = lambda_interp(lambda,s)
% lambda is the index sequence that is produced by the model
% s is the new vector at which evaluations are required.
% the value is a vector of left and right indices, and a vector of fractions.
% the new values are interpolated bewteen the two using the fraction
% Note: lambda decreases. you take:
% sfrac*left+(1-sfrac*right)
if length(lambda)==1 % degenerate case of only one lambda
nums=length(s);
left=ones(nums,1);
right=left;
sfrac=ones(nums,1);
else
s(s > max(lambda)) = max(lambda);
s(s < min(lambda)) = min(lambda);
k=length(lambda);
sfrac =(lambda(1)-s)/(lambda(1) - lambda(k));
lambda = (lambda(1) - lambda)/(lambda(1) - lambda(k));
coord = interp1(lambda, 1:length(lambda), sfrac);
left = floor(coord);
right = ceil(coord);
sfrac=(sfrac-lambda(right))./(lambda(left) - lambda(right));
sfrac(left==right)=1;
end
result.left = left;
result.right = right;
result.frac = sfrac;
%-------------------------------------------------------------
% End private function lambda_interp
%-------------------------------------------------------------
%
% function result = softmax(x, gap)
% if nargin < 2
% gap = false;
% end
% d = size(x);
% maxdist = x(:, 1);
% pclass = repmat(1, d(1), 1);
% for i =2:d(2)
% l = x(:, i) > maxdist;
% pclass(l) = i;
% maxdist(l) = x(l, i);
% end
% if gap
% x = abs(maxdist - x);
% x(1:d(1), pclass) = x * repmat(1, d(2));
% gaps = pmin(x);
% end
% if gap
% result = {pclass, gaps};
% else
% result = pclass;
% end
%-------------------------------------------------------------
% End private function softmax
%-------------------------------------------------------------