The official implementation for the AAAI 2024 paper [Explicit Visual Prompts for Visual Object Tracking].
[Models], [Raw Results], [Training logs]
EVPTrack is a simple and high performance tracker. It achieves SOTA performance on multiple benchmarks by utilizing spatio-temporal and multi-scale template information.
Tracker | GOT-10K (AO) | LaSOT (AUC) | TrackingNet (AUC) | LaSOT_ext (AUC) | UAV123 (AUC) | TNL2K (AUC) |
---|---|---|---|---|---|---|
EVPTrack-384 | 76.6 | 72.7 | 84.4 | 53.7 | 70.9 | 59.1 |
EVPTrack-224 | 73.3 | 70.4 | 83.5 | 48.7 | 70.2 | 57.5 |
conda create -n evptrack python=3.8
conda activate evptrack
bash install.sh
Put the tracking datasets in ./data. It should look like:
${PROJECT_ROOT}
-- data
-- lasot
|-- airplane
|-- basketball
|-- bear
...
-- got10k
|-- test
|-- train
|-- val
-- coco
|-- annotations
|-- images
-- trackingnet
|-- TRAIN_0
|-- TRAIN_1
...
|-- TRAIN_11
|-- TEST
Run the following command to set paths for this project
python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output
After running this command, you can also modify paths by editing these two files
lib/train/admin/local.py # paths about training
lib/test/evaluation/local.py # paths about testing
Download pre-trained MAE HiViT-Base weights and put it under $PROJECT_ROOT$/pretrained_networks
(different pretrained models can also be used, see MAE for more details).
python tracking/train.py \
--script evptrack --config EVPTrack-full-224 \
--save_dir ./output \
--mode multiple --nproc_per_node 4 \
--use_wandb 0
Replace --config
with the desired model config under experiments/evptrack
.
We use wandb to record detailed training logs, in case you don't want to use wandb, set --use_wandb 0
.
- LaSOT or other off-line evaluated benchmarks (modify
--dataset
correspondingly)
python tracking/test.py --tracker_param EVPTrack-full-224 --dataset lasot --threads 8 --num_gpus 4
python tracking/analysis_results.py # need to modify tracker configs and names
- GOT10K-test
python tracking/test.py --tracker_param EVPTrack-full-224 --dataset got10k --threads 8 --num_gpus 4
- TrackingNet
python tracking/test.py --tracker_param EVPTrack-full-224 --dataset trackingnet --threads 8 --num_gpus 4
Note: The speeds reported in our paper were tested on a single RTX2080Ti GPU.
python tracking/profile_model.py --script evptrack --config baseline
- Thanks for the OSTrack and PyTracking library, which helps us to quickly implement our ideas.
If our work is useful for your research, please consider citing:
@inproceedings{shi2024evptrack,
title={Explicit Visual Prompts for Visual Object Tracking},
author={Liangtao Shi and Bineng Zhong and Qihua Liang and Ning Li and Shengping Zhang and Xianxian Li},
booktitle={AAAI},
year={2024}
}