Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: support first_value/last_value in range query #3448

Merged
merged 3 commits into from
Mar 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
278 changes: 272 additions & 6 deletions src/query/src/range_select/plan.rs
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.

use std::any::Any;
use std::cmp::Ordering;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt::Display;
Expand All @@ -21,8 +23,8 @@ use std::task::{Context, Poll};
use std::time::Duration;

use ahash::RandomState;
use arrow::compute::{self, cast_with_options, CastOptions};
use arrow_schema::{DataType, Field, Schema, SchemaRef, TimeUnit};
use arrow::compute::{self, cast_with_options, CastOptions, SortColumn};
use arrow_schema::{DataType, Field, Schema, SchemaRef, SortOptions, TimeUnit};
use common_query::DfPhysicalPlan;
use common_recordbatch::DfSendableRecordBatchStream;
use datafusion::common::{Result as DataFusionResult, Statistics};
Expand All @@ -35,10 +37,14 @@ use datafusion::physical_plan::{
SendableRecordBatchStream,
};
use datafusion::physical_planner::create_physical_sort_expr;
use datafusion_common::utils::get_arrayref_at_indices;
use datafusion_common::utils::{get_arrayref_at_indices, get_row_at_idx};
use datafusion_common::{DFField, DFSchema, DFSchemaRef, DataFusionError, ScalarValue};
use datafusion_expr::utils::exprlist_to_fields;
use datafusion_expr::{Accumulator, Expr, ExprSchemable, LogicalPlan, UserDefinedLogicalNodeCore};
use datafusion_expr::utils::{exprlist_to_fields, COUNT_STAR_EXPANSION};
use datafusion_expr::{
lit, Accumulator, AggregateFunction, Expr, ExprSchemable, LogicalPlan,
UserDefinedLogicalNodeCore,
};
use datafusion_physical_expr::aggregate::utils::down_cast_any_ref;
use datafusion_physical_expr::expressions::create_aggregate_expr as create_aggr_expr;
use datafusion_physical_expr::hash_utils::create_hashes;
use datafusion_physical_expr::{
Expand All @@ -58,6 +64,140 @@ use crate::error::{DataFusionSnafu, RangeQuerySnafu, Result};

type Millisecond = <TimestampMillisecondType as ArrowPrimitiveType>::Native;

/// Implementation of `first_value`/`last_value`
/// aggregate function adapted to range query
#[derive(Debug)]
struct RangeFirstListValue {
/// calculate expr
expr: Arc<dyn PhysicalExpr>,
order_bys: Vec<PhysicalSortExpr>,
}

impl RangeFirstListValue {
pub fn new_aggregate_expr(
expr: Arc<dyn PhysicalExpr>,
order_bys: Vec<PhysicalSortExpr>,
) -> Arc<dyn AggregateExpr> {
Arc::new(Self { expr, order_bys })
}
}

impl PartialEq<dyn Any> for RangeFirstListValue {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| self.expr.eq(&x.expr) && self.order_bys.iter().eq(x.order_bys.iter()))
.unwrap_or(false)
}
}

impl AggregateExpr for RangeFirstListValue {
fn as_any(&self) -> &dyn std::any::Any {
self
}

fn create_accumulator(&self) -> DataFusionResult<Box<dyn Accumulator>> {
Ok(Box::new(RangeFirstListValueAcc::new(
self.order_bys.iter().map(|order| order.options).collect(),
)))
}

fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
let mut exprs: Vec<_> = self
.order_bys
.iter()
.map(|order| order.expr.clone())
.collect();
exprs.push(self.expr.clone());
exprs
}

fn field(&self) -> DataFusionResult<Field> {
unreachable!("AggregateExpr::field will not be used in range query")
}

fn state_fields(&self) -> DataFusionResult<Vec<Field>> {
unreachable!("AggregateExpr::state_fields will not be used in range query")
}
}

#[derive(Debug)]
pub struct RangeFirstListValueAcc {
pub sort_options: Vec<SortOptions>,
pub sort_columns: Vec<ScalarValue>,
pub data: Option<ScalarValue>,
}

impl RangeFirstListValueAcc {
pub fn new(sort_options: Vec<SortOptions>) -> Self {
Self {
sort_options,
sort_columns: vec![],
data: None,
}
}
}

impl Accumulator for RangeFirstListValueAcc {
fn update_batch(&mut self, values: &[ArrayRef]) -> DataFusionResult<()> {
let columns: Vec<_> = values
.iter()
.zip(self.sort_options.iter())
.map(|(v, s)| SortColumn {
values: v.clone(),
options: Some(*s),
})
.collect();
// finding the Top1 problem with complexity O(n)
let idx = compute::lexsort_to_indices(&columns, Some(1))?.value(0);
let vs = get_row_at_idx(values, idx as usize)?;
let need_update = self.data.is_none()
|| vs
.iter()
.zip(self.sort_columns.iter())
.zip(self.sort_options.iter())
.find_map(|((new_value, old_value), sort_option)| {
if new_value.is_null() && old_value.is_null() {
None
} else if sort_option.nulls_first
&& (new_value.is_null() || old_value.is_null())
{
Some(new_value.is_null())
} else {
new_value.partial_cmp(old_value).map(|x| {
(x == Ordering::Greater && sort_option.descending)
|| (x == Ordering::Less && !sort_option.descending)
})
}
})
.unwrap_or(false);
if need_update {
self.sort_columns = vs;
self.data = Some(ScalarValue::try_from_array(
&values[self.sort_options.len()],
idx as usize,
)?);
}
Ok(())
}

fn evaluate(&self) -> DataFusionResult<ScalarValue> {
Ok(self.data.clone().unwrap_or(ScalarValue::Null))
}

fn size(&self) -> usize {
std::mem::size_of_val(self)
}

fn state(&self) -> DataFusionResult<Vec<ScalarValue>> {
unreachable!("Accumulator::state will not be used in range query")
}

fn merge_batch(&mut self, _states: &[ArrayRef]) -> DataFusionResult<()> {
unreachable!("Accumulator::merge_batch will not be used in range query")
}
}

#[derive(PartialEq, Eq, Debug, Hash, Clone)]
pub enum Fill {
Null,
Expand Down Expand Up @@ -271,6 +411,7 @@ pub struct RangeSelect {
pub align: Duration,
pub align_to: i64,
pub time_index: String,
pub time_expr: Expr,
pub by: Vec<Expr>,
pub schema: DFSchemaRef,
pub by_schema: DFSchemaRef,
Expand Down Expand Up @@ -382,6 +523,7 @@ impl RangeSelect {
align,
align_to,
time_index: time_index_name,
time_expr: time_index,
schema,
by_schema,
by,
Expand Down Expand Up @@ -440,6 +582,7 @@ impl UserDefinedLogicalNodeCore for RangeSelect {
range_expr: self.range_expr.clone(),
input: Arc::new(inputs[0].clone()),
time_index: self.time_index.clone(),
time_expr: self.time_expr.clone(),
schema: self.schema.clone(),
by: self.by.clone(),
by_schema: self.by_schema.clone(),
Expand All @@ -452,14 +595,28 @@ impl UserDefinedLogicalNodeCore for RangeSelect {
impl RangeSelect {
fn create_physical_expr_list(
&self,
is_count_aggr: bool,
exprs: &[Expr],
df_schema: &Arc<DFSchema>,
schema: &Schema,
session_state: &SessionState,
) -> DfResult<Vec<Arc<dyn PhysicalExpr>>> {
exprs
.iter()
.map(|by| create_physical_expr(by, df_schema, schema, session_state.execution_props()))
.map(|e| match e {
// `count(*)` will be rewritten by `CountWildcardRule` into `count(1)` when optimizing logical plan.
// The modification occurs after range plan rewrite.
// At this time, aggregate plan has been replaced by a custom range plan,
// so `CountWildcardRule` has not been applied.
// We manually modify it when creating the physical plan.
Expr::Wildcard if is_count_aggr => create_physical_expr(
&lit(COUNT_STAR_EXPANSION),
df_schema,
schema,
session_state.execution_props(),
),
_ => create_physical_expr(e, df_schema, schema, session_state.execution_props()),
})
.collect::<DfResult<Vec<_>>>()
}

Expand Down Expand Up @@ -488,6 +645,72 @@ impl RangeSelect {
.iter()
.map(|range_fn| {
let expr = match &range_fn.expr {
Expr::AggregateFunction(aggr)
if aggr.fun == AggregateFunction::FirstValue
|| aggr.fun == AggregateFunction::LastValue =>
{
// Because we only need to find the first_value/last_value,
// the complexity of sorting the entire batch is O(nlogn).
// We can sort the batch with limit 1.
// In this case, the algorithm degenerates into finding the Top1 problem with complexity O(n).
// We need reverse the sort order of last_value to correctly apply limit 1 when sorting.
let order_by = if let Some(exprs) = &aggr.order_by {
exprs
.iter()
.map(|x| {
create_physical_sort_expr(
x,
input_dfschema,
&input_schema,
session_state.execution_props(),
)
.map(|expr| {
// reverse the last_value sort
if aggr.fun == AggregateFunction::LastValue {
PhysicalSortExpr {
expr: expr.expr,
options: SortOptions {
descending: !expr.options.descending,
nulls_first: !expr.options.nulls_first,
},
}
} else {
expr
}
})
})
.collect::<DfResult<Vec<_>>>()?
} else {
// if user not assign order by, time index is needed as default ordering
Taylor-lagrange marked this conversation as resolved.
Show resolved Hide resolved
let time_index = create_physical_expr(
&self.time_expr,
input_dfschema,
&input_schema,
session_state.execution_props(),
)?;
vec![PhysicalSortExpr {
expr: time_index,
options: SortOptions {
descending: aggr.fun == AggregateFunction::LastValue,
nulls_first: false,
},
}]
};
let arg = self.create_physical_expr_list(
false,
&aggr.args,
input_dfschema,
&input_schema,
session_state,
)?;
// first_value/last_value has only one param.
// The param have been checked by datafusion in logical plan stage.
// We can safely assume that there is only one element here.
Ok(RangeFirstListValue::new_aggregate_expr(
arg[0].clone(),
order_by,
))
}
Expr::AggregateFunction(aggr) => {
let order_by = if let Some(exprs) = &aggr.order_by {
exprs
Expand All @@ -508,6 +731,7 @@ impl RangeSelect {
&aggr.fun,
false,
&self.create_physical_expr_list(
aggr.fun == AggregateFunction::Count,
&aggr.args,
input_dfschema,
&input_schema,
Expand All @@ -523,6 +747,7 @@ impl RangeSelect {
let expr = create_aggr_udf_expr(
&aggr_udf.fun,
&self.create_physical_expr_list(
false,
&aggr_udf.args,
input_dfschema,
&input_schema,
Expand Down Expand Up @@ -564,6 +789,7 @@ impl RangeSelect {
align: self.align.as_millis() as Millisecond,
align_to: self.align_to,
by: self.create_physical_expr_list(
false,
&self.by,
input_dfschema,
&input_schema,
Expand Down Expand Up @@ -1447,4 +1673,44 @@ mod test {
Fill::Linear.apply_fill_strategy(&ts, &mut test1).unwrap();
assert_eq!(test, test1);
}

#[test]
fn test_fist_last_accumulator() {
let mut acc = RangeFirstListValueAcc::new(vec![
SortOptions {
descending: true,
nulls_first: false,
},
SortOptions {
descending: false,
nulls_first: true,
},
]);
let batch1: Vec<Arc<dyn Array>> = vec![
Arc::new(nullable_array!(Float64;
0.0, null, 0.0, null, 1.0
)),
Arc::new(nullable_array!(Float64;
5.0, null, 4.0, null, 3.0
)),
Arc::new(nullable_array!(Int64;
1, 2, 3, 4, 5
)),
];
let batch2: Vec<Arc<dyn Array>> = vec![
Arc::new(nullable_array!(Float64;
3.0, 3.0, 3.0, 3.0, 3.0
)),
Arc::new(nullable_array!(Float64;
null,3.0, 3.0, 3.0, 3.0
)),
Arc::new(nullable_array!(Int64;
6, 7, 8, 9, 10
)),
];
acc.update_batch(&batch1).unwrap();
assert_eq!(acc.evaluate().unwrap(), ScalarValue::Int64(Some(5)));
acc.update_batch(&batch2).unwrap();
assert_eq!(acc.evaluate().unwrap(), ScalarValue::Int64(Some(6)));
}
}
Loading