Skip to content

Code associated with arXiv paper Non-uniform Motion Blur Kernel Estimation via Adaptive Decomposition.

Notifications You must be signed in to change notification settings

GuillermoCarbajal/NonUniformBlurKernelEstimation

Repository files navigation

Non-uniform Motion Blur Kernel Estimation via Adaptive Decomposition

Official Pytorch Implementation of Non-uniform Motion Blur Kernel Estimation via Adaptive Decomposition [ArXiv]

Network Architecture

Getting Started

Clone Repository

git clone https://github.com/GuillermoCarbajal/NonUniformBlurKernelEstimationViaAdaptiveBasisDecomposition

Download the pretrained model

Model can be downloaded from here

Compute kernels from an image

python compute_kernels.py -i image_path -m model_path

Deblur an image or a list of images

python image_deblurring.py -b blurry_img_path --reblur_model model_path --output_folder results

Parameters

Additional options:
--blurry_images: may be a singe image path or a .txt with a list of images.

--n_iters: number of iterations in the RL optimization (default 30)

--resize_factor: input image resize factor (default 1)

--saturation_method: 'combined' or 'basic'. When 'combined' is passed RL in the presence of saturated pixels is applied. Otherwise, simple RL update rule is applied in each iteration. For Kohler images, 'basic' is applied. For RealBlur images 'combined' is better.

--gamma_factor: gamma correction factor. By default is assummed gamma_factor=2.2. For Kohler dataset images gamma_factor=1.0.

Citation

If you use this code for your research, please cite our paper Non-uniform Motion Blur Kernel Estimation via Adaptive Decomposition:

@article{carbajal2021single,
  title={Non-uniform Motion Blur Kernel Estimation via Adaptive Decomposition},
  author={Carbajal, Guillermo and Vitoria, Patricia and Delbracio, Mauricio and Mus{\'e}, Pablo and Lezama, Jos{\'e}},
  journal={arXiv e-prints},
  pages={arXiv--2102},
  year={2021}
}

Aknowledgments

GC was supported partially by Agencia Nacional de Investigacion e Innovación (ANII, Uruguay) ´grant POS FCE 2018 1 1007783 and PV by the MICINN/FEDER UE project under Grant PGC2018- 098625-B-I0; H2020-MSCA-RISE-2017 under Grant 777826 NoMADS and Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502). The experiments presented in this paper were carried out using ClusterUY (site: https://cluster.uy) and GPUs donated by NVIDIA Corporation. We also thanks Juan F. Montesinos for his help during the experimental phase.

About

Code associated with arXiv paper Non-uniform Motion Blur Kernel Estimation via Adaptive Decomposition.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages