Machine Learning for Audio Signals in Python Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media Systems Group Technische Universität Ilmenau Content 01 Neural Networks Basics - Detector: - Introduction - Neural Networks as Detectors - Fully Connected Layer - Activation Functions - Optimizers - Python PyTorch Examples 02 Neural Network as Function Approximator, Regression: - Introduction - Function Approximation - PyTorch Example: Shallow Network - Deep Function Approximator - PyTorch Example: Deep Network 03 Neural Networks for Classification: - Introduction - MNIST Dataset - PyTorch Model - Cross Entropy Loss - PyTorch Example - Unknown Test Image 04 Neural Network Detector for MNIST Digit Recognition: - Introduction - One-Hot Encoding - PyTorch Example 05 Convolutional Neural Networks: - Introduction - A 1-D Signal Detector - An Audio Predictor 06 Convolutional Autoencoder: - Introduction - PyTorch Audio Convolutional Autoencoder - Effects of Signal Shifts 07 Denoising Autoencoder: - Introduction - Experiment 1 with stride=512 - Experiment 2 with stride=32 08 Variational Autoencoder (VAE): - Introduction - Posterior and Prior Distribution - Kullback–Leibler Divergence - Variational Loss - Lagrange Multiplier - Variational Autoencoder Experiments 09 Recurrent Neural Network (RNN): - Introduction - Infinite Impulse Response (IIR) Filter Structure - IIR Python Implementation - IIR Implementation using RNN in PyTorch - Training the RNN YouTube Playlist Requirements Please check the following files at the 'binder' folder: environment.yml postBuild Note Examples requiring a microphone will not work on remote environments such as Binder and Google Colab.