Skip to content

Reading list for deep learning in Computer Vision and Medical Image Analysis

Notifications You must be signed in to change notification settings

Guo-Xiaoqing/Reading-List

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

42 Commits
Β 
Β 

Repository files navigation

Reading List

  • The goal of this document is to provide a reading list for Deep Learning in Computer Vision and Medical Image Analysis Field.

Attention & Saliency

  • Zhou, Bolei, et al. "Learning deep features for discriminative localization." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Chen, Liang-Chieh, et al. "Attention to scale: Scale-aware semantic image segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.πŸ‘πŸ‘πŸ‘
  • Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.πŸ‘πŸ‘πŸ‘πŸ‘
  • Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." Proceedings of the IEEE International Conference on Computer Vision. 2017.πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Wang, Fei, et al. "Residual attention network for image classification." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.
  • Zhang, Rui, et al. "Scale-adaptive convolutions for scene parsing." Proceedings of the IEEE International Conference on Computer Vision. 2017.πŸ‘πŸ‘πŸ‘πŸ‘
  • Fu, Jianlong, Heliang Zheng, and Tao Mei. "Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. πŸ‘πŸ‘πŸ‘πŸ‘
  • Wei, Zhen, et al. "Learning adaptive receptive fields for deep image parsing network." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.πŸ‘πŸ‘πŸ‘πŸ‘
  • Mahapatra, Dwarikanath, et al. "Image super resolution using generative adversarial networks and local saliency maps for retinal image analysis." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2017.
  • Guan, Qingji, and Yaping Huang. "Multi-label chest X-ray image classification via category-wise residual attention learning." Pattern Recognition Letters (2018).
  • Wang, Xiaolong, et al. "Non-local neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Zhang, Han, et al. "Self-attention generative adversarial networks." arXiv preprint arXiv:1805.08318 (2018). πŸ‘πŸ‘πŸ‘πŸ‘(Tensorflow-code)
  • Yan, Yichao, et al. "Multi-level attention model for person re-identification." Pattern Recognition Letters (2018).
  • SENet: Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks."In CVPR (2018). πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Roy, Abhijit Guha, Nassir Navab, and Christian Wachinger. "Concurrent spatial and channel β€˜squeeze & excitation’in fully convolutional networks." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2018. πŸ‘πŸ‘πŸ‘πŸ‘
  • Xu, Rudong, et al. "Attention-Mechanism-Containing Neural Networks for High-Resolution Remote Sensing Image Classification." Remote Sensing 10.10 (2018): 1602.
  • Guan, Qingji, et al. "Diagnose like a radiologist: Attention guided convolutional neural network for thorax disease classification." arXiv preprint arXiv:1801.09927 (2018).
  • Sarafianos, Nikolaos, Xiang Xu, and Ioannis A. Kakadiaris. "Deep imbalanced attribute classification using visual attention aggregation." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
  • Oktay, Ozan, et al. "Attention u-net: Learning where to look for the pancreas." arXiv preprint arXiv:1804.03999 (2018).
  • Wang, Yi, et al. "Deep attentional features for prostate segmentation in ultrasound." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2018.
  • Li, Hanchao, et al. "Pyramid attention network for semantic segmentation." arXiv preprint arXiv:1805.10180 (2018).
  • AffinityNet: Ahn, Jiwoon, and Suha Kwak. "Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
  • Ke, Zi-Yi, and Chiou-Ting Hsu. "Generating Self-Guided Dense Annotations for Weakly Supervised Semantic Segmentation." arXiv preprint arXiv:1810.07050 (2018).πŸ‘πŸ‘πŸ‘
  • Li, Kunpeng, et al. "Tell me where to look: Guided attention inference network." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.πŸ‘πŸ‘πŸ‘
  • Fan, Lei, et al. "Semantic segmentation with global encoding and dilated decoder in street scenes." IEEE Access 6 (2018): 50333-50343.
  • Huang, Zilong, et al. "Ccnet: Criss-cross attention for semantic segmentation." arXiv preprint arXiv:1811.11721 (2018).πŸ‘πŸ‘πŸ‘
  • Zhao, Hengshuang, et al. "Psanet: Point-wise spatial attention network for scene parsing." Proceedings of the European Conference on Computer Vision (ECCV). 2018.πŸ‘πŸ‘πŸ‘
  • Pu, Shi, et al. "Deep attentive tracking via reciprocative learning." Advances in Neural Information Processing Systems. 2018.πŸ‘πŸ‘πŸ‘πŸ‘
  • Woo, Sanghyun, et al. "Cbam: Convolutional block attention module." Proceedings of the European Conference on Computer Vision (ECCV). 2018.πŸ‘πŸ‘πŸ‘πŸ‘
  • Jiao, Jianbo, et al. "Look deeper into depth: Monocular depth estimation with semantic booster and attention-driven loss." Proceedings of the European Conference on Computer Vision (ECCV). 2018.πŸ‘πŸ‘πŸ‘
  • Yuan, Yuhui, and Jingdong Wang. "Ocnet: Object context network for scene parsing." arXiv preprint arXiv:1809.00916 (2018).πŸ‘πŸ‘πŸ‘
  • Ling, Hefei, et al. "Self Residual Attention Network for Deep Face Recognition." IEEE Access 7 (2019): 55159-55168.
  • Fu, Jun, et al. "Dual attention network for scene segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.πŸ‘πŸ‘πŸ‘
  • CARAFE: Content-Aware ReAssembly of Features
  • Li, Xia, et al. "Expectation-Maximization Attention Networks for Semantic Segmentation." arXiv preprint arXiv:1907.13426 (2019). πŸ‘πŸ‘πŸ‘πŸ‘
  • Ding B, Long C, Zhang L, et al. ARGAN: attentive recurrent generative adversarial network for shadow detection and removal[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 10213-10222.
  • Longformer: The Long-Document Transformer (2020οΌ‰
  • Mixed High-Order Attention Network for Person Re-Identification (ICCV 2019οΌ‰
  • Fine-grained Recognition: Accounting for Subtle Differences between Similar Classes (AAAI 2020οΌ‰
  • Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations (CVPR 2019οΌ‰
  • Co-saliency Detection via Mask-guided Fully Convolutional Networks with Multi-scale Label Smoothing (CVPR 2019)
  • Feature Weighting and Boosting for Few-Shot Segmentation (ICCV 2019οΌ‰

Domain adaptation

  • Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." arXiv preprint arXiv:1409.7495 (2014). πŸ‘πŸ‘πŸ‘πŸ‘
  • Bousmalis, Konstantinos, et al. "Domain separation networks." Advances in neural information processing systems. 2016. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Tzeng, Eric, et al. "Adversarial discriminative domain adaptation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. πŸ‘πŸ‘πŸ‘πŸ‘
  • Bousmalis, Konstantinos, et al. "Unsupervised pixel-level domain adaptation with generative adversarial networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. πŸ‘πŸ‘πŸ‘πŸ‘
  • Murez, Zak, et al. "Image to image translation for domain adaptation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘πŸ‘
  • Tsai, Yi-Hsuan, et al. "Learning to adapt structured output space for semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘πŸ‘
  • Vu, Tuan-Hung, et al. "Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • Vu, Tuan-Hung, et al. "DADA: Depth-aware Domain Adaptation in Semantic Segmentation." arXiv preprint arXiv:1904.01886 (2019). πŸ‘πŸ‘πŸ‘
  • Chen, Minghao, Hongyang Xue, and Deng Cai. "Domain Adaptation for Semantic Segmentation with Maximum Squares Loss." Proceedings of the IEEE International Conference on Computer Vision. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • Zhang, Yiheng, et al. "Fully convolutional adaptation networks for semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘πŸ‘
  • Xu, Xiang, et al. "d-SNE: Domain Adaptation using Stochastic Neighborhood Embedding." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘
  • Chang, Wei-Lun, et al. "All about Structure: Adapting Structural Information across Domains for Boosting Semantic Segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • Chen, Yun-Chun, et al. "CrDoCo: Pixel-Level Domain Transfer With Cross-Domain Consistency." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • Chen, Chaoqi, et al. "Progressive Feature Alignment for Unsupervised Domain Adaptation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • You, Kaichao, et al. "Universal Domain Adaptation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
  • Kang, Guoliang, et al. "Contrastive Adaptation Network for Unsupervised Domain Adaptation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Zhu, Xinge, et al. "Adapting Object Detectors via Selective Cross-Domain Alignment." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.πŸ‘πŸ‘πŸ‘
  • Gong, Rui, et al. "DLOW: Domain flow for adaptation and generalization." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.πŸ‘πŸ‘πŸ‘πŸ‘
  • Saito, Kuniaki, et al. "Maximum classifier discrepancy for unsupervised domain adaptation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Luo, Yawei, et al. "Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘
  • Lee, Chen-Yu, et al. "Sliced wasserstein discrepancy for unsupervised domain adaptation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • Pan, Yingwei, et al. "Transferrable Prototypical Networks for Unsupervised Domain Adaptation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • Li, Yunsheng, Lu Yuan, and Nuno Vasconcelos. "Bidirectional Learning for Domain Adaptation of Semantic Segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • Zou, Yang, et al. "Unsupervised domain adaptation for semantic segmentation via class-balanced self-training." Proceedings of the European Conference on Computer Vision (ECCV). 2018. πŸ‘πŸ‘πŸ‘πŸ‘
  • Zou, Yang, et al. "Confidence Regularized Self-Training." Proceedings of the IEEE international conference on computer vision. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • Chen, Yuhua, et al. "Learning semantic segmentation from synthetic data: A geometrically guided input-output adaptation approach." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘
  • Raghu, Maithra, et al. "Transfusion: Understanding transfer learning with applications to medical imaging." arXiv preprint arXiv:1902.07208 (2019). πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘

Segmentation

  • Deeplab: Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs." IEEE transactions on pattern analysis and machine intelligence 40.4 (2017): 834-848. πŸ‘πŸ‘πŸ‘πŸ‘ Tensorflow-code
  • Deeplab v3+: Chen, Liang-Chieh, et al. "Encoder-decoder with atrous separable convolution for semantic image segmentation." Proceedings of the European conference on computer vision (ECCV). 2018. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘ Tensorflow-code
  • Tokunaga H, Teramoto Y, Yoshizawa A, et al. Adaptive Weighting Multi-Field-of-View CNN for Semantic Segmentation in Pathology[C]//Proceedings of the IEEE CVPR. 2019: 12597-12606.
  • Takikawa, Towaki, et al. "Gated-scnn: Gated shape cnns for semantic segmentation." arXiv preprint arXiv:1907.05740 (2019). πŸ‘πŸ‘πŸ‘πŸ‘
  • Yang, Maoke, et al. "Denseaspp for semantic segmentation in street scenes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘πŸ‘
  • Zhao S, Wang Y, Yang Z, et al. Region Mutual Information Loss for Semantic Segmentation[C]//Advances in Neural Information Processing Systems. 2019: 11115-11125. πŸ‘πŸ‘πŸ‘πŸ‘

Semi-supervised & Unsupervised Learing

  • Wei, Yunchao, et al. "Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘
  • Dalca, Adrian V., John Guttag, and Mert R. Sabuncu. "Anatomical priors in convolutional networks for unsupervised biomedical segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Li, Xiaomeng, et al. "Semi-supervised Skin Lesion Segmentation via Transformation Consistent Self-ensembling Model." arXiv preprint arXiv:1808.03887 (2018). πŸ‘πŸ‘πŸ‘
  • Zhang, Ying, et al. "Deep mutual learning." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Xie, Yutong, et al. "Semi-and Weakly Supervised Directional Bootstrapping Model for Automated Skin Lesion Segmentation." arXiv preprint arXiv:1903.03313 (2019). πŸ‘πŸ‘πŸ‘
  • Wu, Si, et al. "Mutual Learning of Complementary Networks via Residual Correction for Improving Semi-Supervised Classification." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • Muhammad H, Sigel C S, Campanella G, et al. Unsupervised Subtyping of Cholangiocarcinoma Using a Deep Clustering Convolutional Autoencoder[C]//MICCAI 2019: 604-612. πŸ‘πŸ‘πŸ‘
  • Xue Y, Zhou Q, Ye J, et al. Synthetic Augmentation and Feature-Based Filtering for Improved Cervical Histopathology Image Classification[C]//MICCAI 2019: 387-396. πŸ‘πŸ‘
  • Yu L, Wang S, Li X, et al. Uncertainty-Aware Self-ensembling Model for Semi-supervised 3D Left Atrium Segmentation[C]//MICCAI 2019: 605-613. πŸ‘πŸ‘πŸ‘
  • Chen S, Bortsova G, JuΓ‘rez A G U, et al. Multi-task Attention-Based Semi-supervised Learning for Medical Image Segmentation[C]//MICCAI 2019: 457-465. πŸ‘πŸ‘
  • Zheng H, Lin L, Hu H, et al. Semi-supervised Segmentation of Liver Using Adversarial Learning with Deep Atlas Prior[C]//MICCAI 2019: 148-156. πŸ‘πŸ‘πŸ‘
  • Bortsova G, Dubost F, Hogeweg L, et al. Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations[C]//MICCAI 2019: 810-818. πŸ‘πŸ‘
  • Kervadec H, Dolz J, Granger E, et al. Curriculum semi-supervised segmentation[J]. arXiv preprint arXiv:1904.05236, 2019. πŸ‘πŸ‘πŸ‘
  • Yang J, Dvornek N C, Zhang F, et al. Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation[C]//MICCAI 2019: 255-263. πŸ‘πŸ‘πŸ‘
  • S4L: Self-Supervised Semi-Supervised Learning. (ICCV 2019) πŸ‘πŸ‘πŸ‘
  • Invariant Information Clustering for Unsupervised Image Classification and Segmentation. (ICCV 2019) πŸ‘πŸ‘πŸ‘πŸ‘
  • Qi G J, Zhang L, Chen C W, et al. AVT: Unsupervised Learning of Transformation Equivariant Representations by Autoencoding Variational Transformations[J]. arXiv preprint arXiv:1903.10863, 2019. πŸ‘πŸ‘πŸ‘
  • Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation. (ICCV 2019) πŸ‘πŸ‘πŸ‘πŸ‘
  • Normalized Wasserstein for Mixture Distributions with Applications in Adversarial Learning and Domain Adaptation. (ICCV 2019) πŸ‘πŸ‘πŸ‘πŸ‘

Data Augmentation

  • Wang Q, Li W, Gool L V. Semi-supervised learning by augmented distribution alignment[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1466-1475. πŸ‘πŸ‘πŸ‘πŸ‘
  • Xu M, Zhang J, Ni B, et al. Adversarial Domain Adaptation with Domain Mixup[J]. AAAI 2020 oral. πŸ‘πŸ‘πŸ‘πŸ‘
  • Li Z, Kamnitsas K, Glocker B. Overfitting of neural nets under class imbalance: Analysis and improvements for segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2019: 402-410. πŸ‘πŸ‘πŸ‘πŸ‘
  • Chaitanya K, Karani N, Baumgartner C F, et al. Semi-supervised and task-driven data augmentation[C]//International Conference on Information Processing in Medical Imaging. Springer, Cham, 2019: 29-41. πŸ‘πŸ‘
  • Panfilov E, Tiulpin A, Klein S, et al. Improving Robustness of Deep Learning Based Knee MRI Segmentation: Mixup and Adversarial Domain Adaptation[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. 2019: 0-0. πŸ‘πŸ‘
  • Eaton-Rosen Z, Bragman F, Ourselin S, et al. Improving data augmentation for medical image segmentation[J]. 2018. πŸ‘πŸ‘
  • DeVries T, Taylor G W. Improved regularization of convolutional neural networks with cutout[J]. arXiv preprint arXiv:1708.04552, 2017. πŸ‘πŸ‘
  • French G, Aila T, Laine S, et al. SEMI-SUPERVISED SEMANTIC SEGMENTATION NEEDS STRONG, HIGH-DIMENSIONAL PERTURBATIONS[J]. πŸ‘πŸ‘
  • Yun S, Han D, Oh S J, et al. Cutmix: Regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 6023-6032. πŸ‘πŸ‘πŸ‘
  • Hendrycks D, Mu N, Cubuk E D, et al. AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty[J]. arXiv preprint arXiv:1912.02781, 2019. πŸ‘πŸ‘πŸ‘
  • Choi J, Kim T, Kim C. Self-Ensembling with GAN-based Data Augmentation for Domain Adaptation in Semantic Segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 6830-6840.
  • Zhang K, Li T, Liu B, et al. Co-saliency detection via mask-guided fully convolutional networks with multi-scale label smoothing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 3095-3104.
  • Beckham C, Honari S, Verma V, et al. On Adversarial Mixup Resynthesis[C]//Advances in Neural Information Processing Systems. 2019: 4348-4359.
  • Cubuk E D, Zoph B, Mane D, et al. Autoaugment: Learning augmentation strategies from data[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2019: 113-123. πŸ‘πŸ‘πŸ‘πŸ‘
  • Lim S, Kim I, Kim T, et al. Fast autoaugment[C]//Advances in Neural Information Processing Systems. 2019: 6662-6672. πŸ‘πŸ‘πŸ‘πŸ‘
  • Ho D, Liang E, Stoica I, et al. Population based augmentation: Efficient learning of augmentation policy schedules[J]. arXiv preprint arXiv:1905.05393, 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • mixup: BEYOND EMPIRICAL RISK MINIMIZATION. ICLR 2018πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • MixMatch: A Holistic Approach to Semi-Supervised Learning (NeurIPS 2019)
  • FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence (2020)
  • SuperMix: Supervising the Mixing Data Augmentation (2020οΌ‰
  • Interpolation Consistency Training for Semi-Supervised Learning (IJCAI 2019)
  • Virtual adversarial training: a regularization method for supervised and semi-supervised learning

Prior Information (edge, shape, anatomical)

  • BenTaieb, AΓ―cha, and Ghassan Hamarneh. "Topology aware fully convolutional networks for histology gland segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2016. πŸ‘πŸ‘πŸ‘
  • Ravishankar, Hariharan, et al. "Learning and incorporating shape models for semantic segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2017. πŸ‘πŸ‘πŸ‘
  • Oktay, Ozan, et al. "Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation." IEEE transactions on medical imaging 37.2 (2017): 384-395. πŸ‘πŸ‘πŸ‘πŸ‘
  • Su, Jinming, et al. "Selectivity or Invariance: Boundary-aware Salient Object Detection." arXiv preprint arXiv:1812.10066 (2018).πŸ‘πŸ‘πŸ‘
  • Duan, Jinming, et al. "Combining Deep Learning and Shape Priors for Bi-Ventricular Segmentation of Volumetric Cardiac Magnetic Resonance Images." International Workshop on Shape in Medical Imaging. Springer, Cham, 2018. πŸ‘πŸ‘πŸ‘
  • Pumarola, Albert, et al. "Geometry-aware network for non-rigid shape prediction from a single view." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
  • Dalca, Adrian V., John Guttag, and Mert R. Sabuncu. "Anatomical priors in convolutional networks for unsupervised biomedical segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Mirikharaji, Zahra, and Ghassan Hamarneh. "Star shape prior in fully convolutional networks for skin lesion segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2018. πŸ‘πŸ‘πŸ‘
  • Novotny, David, et al. "Semi-convolutional operators for instance segmentation." Proceedings of the European Conference on Computer Vision (ECCV). 2018. πŸ‘πŸ‘πŸ‘πŸ‘
  • Liu, Rosanne, et al. "An intriguing failing of convolutional neural networks and the coordconv solution." Advances in Neural Information Processing Systems. 2018.
  • Kulikov, Victor, and Victor Lempitsky. "Instance Segmentation of Biological Images Using Harmonic Embeddings." arXiv preprint arXiv:1904.05257 (2019). πŸ‘πŸ‘πŸ‘
  • Duan, Jinming, et al. "Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach." IEEE transactions on medical imaging (2019). πŸ‘πŸ‘πŸ‘πŸ‘
  • Zhou, Yuyin, et al. "Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation." arXiv preprint arXiv:1904.06346 (2019).
  • Ea-GANs: Yu, Biting, et al. "Ea-GANs: Edge-aware Generative Adversarial Networks for Cross-modality MR Image Synthesis." IEEE transactions on medical imaging (2019).πŸ‘πŸ‘πŸ‘πŸ‘
  • Tofighi, Mohammad, et al. "Prior Information Guided Regularized Deep Learning for Cell Nucleus Detection." IEEE transactions on medical imaging (2019). πŸ‘πŸ‘πŸ‘πŸ‘
  • Neven, Davy, et al. "Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • Mukundan, Arun, Giorgos Tolias, and Ondrej Chum. "Explicit Spatial Encoding for Deep Local Descriptors." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘
  • Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior[C]//Proceedings of the IEEE CVPR. 2018: 9446-9454.
  • Chen C, Biffi C, Tarroni G, et al. Learning Shape Priors for Robust Cardiac MR Segmentation from Multi-view Images[C]//MICCAI 2019: 523-531. πŸ‘πŸ‘πŸ‘
  • Larrazabal A J, Martinez C, Ferrante E. Anatomical Priors for Image Segmentation via Post-Processing with Denoising Autoencoders[J]. arXiv preprint arXiv:1906.02343, 2019. πŸ‘
  • Yue Q, Luo X, Ye Q, et al. Cardiac Segmentation from LGE MRI Using Deep Neural Network Incorporating Shape and Spatial Priors[J]. arXiv preprint arXiv:1906.07347, 2019. πŸ‘πŸ‘πŸ‘
  • Painchaud N, Skandarani Y, Judge T, et al. Cardiac MRI Segmentation with Strong Anatomical Guarantees[C]//MICCAI 2019: 632-640. πŸ‘πŸ‘πŸ‘πŸ‘
  • Multi-class Part Parsing with Joint Boundary-Semantic Awareness (ICCV 2019)
  • Stacked Cross Refinement Network for Edge-Aware Salient Object Detection (ICCV 2019)
  • Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss (2019)
  • TransGaGa: Geometry-Aware Unsupervised Image-to-Image Translation (CVPR 2019)

Loss function

  • Liu, Weiyang, et al. "Large-margin softmax loss for convolutional neural networks." ICML. Vol. 2. No. 3. 2016. πŸ‘πŸ‘πŸ‘πŸ‘
  • Sphereface : Liu, Weiyang, et al. "Sphereface: Deep hypersphere embedding for face recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. πŸ‘πŸ‘πŸ‘πŸ‘
  • Talmi, Itamar, Roey Mechrez, and Lihi Zelnik-Manor. "Template matching with deformable diversity similarity." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. πŸ‘πŸ‘πŸ‘πŸ‘
  • Wang, Jian, et al. "Deep metric learning with angular loss." Proceedings of the IEEE International Conference on Computer Vision. 2017. πŸ‘πŸ‘πŸ‘πŸ‘
  • Lin, Tsung-Yi, et al. "Focal loss for dense object detection." Proceedings of the IEEE international conference on computer vision. 2017. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Wong, Ken CL, et al. "3d segmentation with exponential logarithmic loss for highly unbalanced object sizes." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2018. πŸ‘πŸ‘πŸ‘
  • Chen, Bike, Chen Gong, and Jian Yang. "Importance-aware semantic segmentation for autonomous vehicles." IEEE Transactions on Intelligent Transportation Systems 20.1 (2018): 137-148.πŸ‘πŸ‘πŸ‘
  • Yu, Xin, et al. "Face super-resolution guided by facial component heatmaps." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
  • Liu, Weiyang, et al. "Decoupled networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • AutoLoss: Xu, Haowen, et al. "AutoLoss: Learning Discrete Schedules for Alternate Optimization." arXiv preprint arXiv:1810.02442 (2018).
  • Mechrez, Roey, Itamar Talmi, and Lihi Zelnik-Manor. "The contextual loss for image transformation with non-aligned data." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
  • Wang, Xiaobo, et al. "Support Vector Guided Softmax Loss for Face Recognition." arXiv preprint arXiv:1812.11317 (2018). πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Wang, Feng, et al. "Additive margin softmax for face verification." IEEE Signal Processing Letters 25.7 (2018): 926-930. πŸ‘πŸ‘πŸ‘πŸ‘
  • GM loss: Wan, Weitao, et al. "Rethinking feature distribution for loss functions in image classification." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Zhang, Xuaner, Ren Ng, and Qifeng Chen. "Single image reflection separation with perceptual losses." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. πŸ‘πŸ‘πŸ‘πŸ‘
  • Sun, Ming, et al. "Multi-attention multi-class constraint for fine-grained image recognition." Proceedings of the European Conference on Computer Vision (ECCV). 2018. πŸ‘πŸ‘πŸ‘πŸ‘
  • Wang, Cheng, et al. "Mancs: A multi-task attentional network with curriculum sampling for person re-identification." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
  • Liu, Weiyang, et al. "Learning towards minimum hyperspherical energy." Advances in Neural Information Processing Systems. 2018. πŸ‘πŸ‘πŸ‘πŸ‘
  • Zhu, Xinge, et al. "Penalizing top performers: Conservative loss for semantic segmentation adaptation." Proceedings of the European Conference on Computer Vision (ECCV). 2018.πŸ‘πŸ‘πŸ‘
  • Hayat, Munawar, et al. "Max-margin Class Imbalanced Learning with Gaussian Affinity." arXiv preprint arXiv:1901.07711 (2019). πŸ‘πŸ‘πŸ‘
  • Lifchitz, Yann, et al. "Dense Classification and Implanting for Few-Shot Learning." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • CIA-Net: Zhou, Yanning, et al. "CIA-Net: Robust Nuclei Instance Segmentation with Contour-Aware Information Aggregation." International Conference on Information Processing in Medical Imaging. Springer, Cham, 2019. πŸ‘πŸ‘πŸ‘
  • Cui, Yin, et al. "Class-balanced loss based on effective number of samples." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
  • Wang, Xinshao, et al. "Deep metric learning by online soft mining and class-aware attention." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019. πŸ‘πŸ‘πŸ‘πŸ‘
  • Hui, Le, et al. "Inter-Class Angular Loss for Convolutional Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence. (2019).
  • Arcface: Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘
  • Fair Loss: Liu B, Deng W, Zhong Y, et al. Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 10052-10061. πŸ‘πŸ‘πŸ‘πŸ‘
  • Fine-grained Recognition: Accounting for Subtle Differences between Similar Classes (AAAI 2020οΌ‰πŸ‘πŸ‘πŸ‘
  • Bag of Tricks for Image Classification with Convolutional Neural Networks (CVPR 2019) πŸ‘πŸ‘πŸ‘πŸ‘
  • When Does Label Smoothing Help? (NeurIPS 2019)

About

Reading list for deep learning in Computer Vision and Medical Image Analysis

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published