Skip to content
/ XNeRF Public

[WACV 2023] XNeRF: Explicit Neural Radiance Field for Multi-Scene 360° Insufficient RGB-D Views

License

Notifications You must be signed in to change notification settings

HaoyiZhu/XNeRF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

X-NeRF: Explicit Neural Radiance Field for Multi-Scene 360° Insufficient RGB-D Views

Accepted by WACV 2023. Check out our paper on arXiv.

Requirements

  • Python >= 3.8
  • PyTorch == 1.9.1
  • MinkowskiEngine == 0.5.4

Installation

  1. Install PyTorch

  2. Install PyTorch Scatter

  3. Install MinkowskiEngine

  4. Install X-NeRF

pip install -e .

Quick Start

# training for single-scene
CUDA_VISIBLE_DEVICES=0 python scripts/train.py dataset=single_scene
# training for multi-scene
CUDA_VISIBLE_DEVICES=0 python scripts/train.py dataset=multi_scene
# eval
CUDA_VISIBLE_DEVICES=0 python scripts/eval.py dataset=multi_scene

Please refer to ./configs/ for more details.

Note that training X-NeRF may consume much GPU memory. We use an NVIDIA A100 for training. You can reduce the batch size if you meet with OOM. And we have not supported multi-gpu training yet.

Dataset

You can check our dataset in ./data/. The folder contains 10 scenes, each with 7 views. In our paper, we treat scene 1-6 as seen scenes and treat scene 7-10 as novel scenes to do zero-shot cross-scene evaluation. We use view 6 as novel view in all scenes. For more details about how to load and process the data, please refer to XNeRF_SingleScene.py.

Pre-trained Weights

You can download our pre-trained weight from Google Drive or Baidu Pan. To load the weight, you can set ckpt_path={path/to/weight} in the command.

TO DOs

  • Multi-gpu training
  • Reduce the memory consumption when training
  • More scenes
  • More backbones

Acknowledgement

The CUDA extension for rendering is adapted from DVGO and the SH function is adapted from PlenOctrees.

About

[WACV 2023] XNeRF: Explicit Neural Radiance Field for Multi-Scene 360° Insufficient RGB-D Views

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published