中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
- void addNum(int num) - 从数据流中添加一个整数到数据结构中。
- double findMedian() - 返回目前所有元素的中位数。
示例:
addNum(1) addNum(2) findMedian() -> 1.5 addNum(3) findMedian() -> 2
进阶:
- 如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
- 如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?
- 创建大根堆、小根堆,其中:大根堆存放较小的一半元素,小根堆存放较大的一半元素。
- 添加元素时,先放入小根堆,然后将小根堆对顶元素弹出并放入大根堆(使得大根堆个数多 1);若大小根堆元素个数差超过 1,则将大根堆元素弹出放入小根堆。
- 取中位数时,若大根堆元素较多,取大根堆堆顶,否则取两堆顶元素和的平均值。
class MedianFinder:
def __init__(self):
"""
initialize your data structure here.
"""
self.min_heap = []
self.max_heap = []
def addNum(self, num: int) -> None:
heapq.heappush(self.min_heap, num)
heapq.heappush(self.max_heap, -heapq.heappop(self.min_heap))
if len(self.max_heap) - len(self.min_heap) > 1:
heapq.heappush(self.min_heap, -heapq.heappop(self.max_heap))
def findMedian(self) -> float:
if len(self.max_heap) > len(self.min_heap):
return -self.max_heap[0]
return (self.min_heap[0] - self.max_heap[0]) / 2
# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()
class MedianFinder {
private PriorityQueue<Integer> minHeap;
private PriorityQueue<Integer> maxHeap;
/** initialize your data structure here. */
public MedianFinder() {
minHeap = new PriorityQueue<>();
maxHeap = new PriorityQueue<>(Collections.reverseOrder());
}
public void addNum(int num) {
minHeap.offer(num);
maxHeap.offer(minHeap.poll());
if (maxHeap.size() - minHeap.size() > 1) {
minHeap.offer(maxHeap.poll());
}
}
public double findMedian() {
if (maxHeap.size() > minHeap.size()) {
return maxHeap.peek();
}
return (minHeap.peek() + maxHeap.peek()) * 1.0 / 2;
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {}
void addNum(int num) {
max_heap.push(num);
min_heap.push(max_heap.top());
max_heap.pop();
if (min_heap.size() > max_heap.size()) {
max_heap.push(min_heap.top());
min_heap.pop();
}
}
double findMedian() {
if (max_heap.size() > min_heap.size()) {
return max_heap.top();
}
return (double)(max_heap.top() + min_heap.top()) / 2;
}
private:
priority_queue<int> max_heap;
priority_queue<int, vector<int>, greater<int>> min_heap;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder* obj = new MedianFinder();
* obj->addNum(num);
* double param_2 = obj->findMedian();
*/