The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value and the median is the mean of the two middle values.
- For example, for
arr = [2,3,4]
, the median is3
. - For example, for
arr = [2,3]
, the median is(2 + 3) / 2 = 2.5
.
Implement the MedianFinder class:
MedianFinder()
initializes theMedianFinder
object.void addNum(int num)
adds the integernum
from the data stream to the data structure.double findMedian()
returns the median of all elements so far. Answers within10-5
of the actual answer will be accepted.
Example 1:
Input ["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"] [[], [1], [2], [], [3], []] Output [null, null, null, 1.5, null, 2.0] Explanation MedianFinder medianFinder = new MedianFinder(); medianFinder.addNum(1); // arr = [1] medianFinder.addNum(2); // arr = [1, 2] medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2) medianFinder.addNum(3); // arr[1, 2, 3] medianFinder.findMedian(); // return 2.0
Constraints:
-105 <= num <= 105
- There will be at least one element in the data structure before calling
findMedian
. - At most
5 * 104
calls will be made toaddNum
andfindMedian
.
Follow up:
- If all integer numbers from the stream are in the range
[0, 100]
, how would you optimize your solution? - If
99%
of all integer numbers from the stream are in the range[0, 100]
, how would you optimize your solution?
class MedianFinder:
def __init__(self):
"""
initialize your data structure here.
"""
self.min_heap = []
self.max_heap = []
def addNum(self, num: int) -> None:
heapq.heappush(self.min_heap, num)
heapq.heappush(self.max_heap, -heapq.heappop(self.min_heap))
if len(self.max_heap) - len(self.min_heap) > 1:
heapq.heappush(self.min_heap, -heapq.heappop(self.max_heap))
def findMedian(self) -> float:
if len(self.max_heap) > len(self.min_heap):
return -self.max_heap[0]
return (self.min_heap[0] - self.max_heap[0]) / 2
# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()
class MedianFinder {
private PriorityQueue<Integer> minHeap;
private PriorityQueue<Integer> maxHeap;
/** initialize your data structure here. */
public MedianFinder() {
minHeap = new PriorityQueue<>();
maxHeap = new PriorityQueue<>(Collections.reverseOrder());
}
public void addNum(int num) {
minHeap.offer(num);
maxHeap.offer(minHeap.poll());
if (maxHeap.size() - minHeap.size() > 1) {
minHeap.offer(maxHeap.poll());
}
}
public double findMedian() {
if (maxHeap.size() > minHeap.size()) {
return maxHeap.peek();
}
return (minHeap.peek() + maxHeap.peek()) * 1.0 / 2;
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() {}
void addNum(int num) {
max_heap.push(num);
min_heap.push(max_heap.top());
max_heap.pop();
if (min_heap.size() > max_heap.size()) {
max_heap.push(min_heap.top());
min_heap.pop();
}
}
double findMedian() {
if (max_heap.size() > min_heap.size()) {
return max_heap.top();
}
return (double)(max_heap.top() + min_heap.top()) / 2;
}
private:
priority_queue<int> max_heap;
priority_queue<int, vector<int>, greater<int>> min_heap;
};
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder* obj = new MedianFinder();
* obj->addNum(num);
* double param_2 = obj->findMedian();
*/