A simple demo of training GAN to generate samples for Gamma distribution
$ python main.py --help
This will illustrate all the arguments you could play with the code.
A simple demo using gan to generate gamma distributions
optional arguments:
-h, --help show this help message and exit
--gpu GPU gpu to use: 0, 1, 2, 3, 4. Default: None
--lr LR learning rate. Default: 1e-4
--iterations ITERATIONS
num of iterations. Default: 2000
--alpha ALPHA Gamma alpha. Default: 2.
--scale SCALE Gamma beta. Default: .5
--sample_size SAMPLE_SIZE
sample size. Default: 100
--model_save_dir MODEL_SAVE_DIR
directory to save model. Default: checkpoints
--res_save_dir RES_SAVE_DIR
directory to save results. Default: results
--log_save_dir LOG_SAVE_DIR
directory to save logs. Default: logs
###########################################################################
Defaultly, the code will train a generator to fit the Gamma(2, 2)
, you can play with the code by changing the argument --alpha
and --beta
to model other Gamma distributions. For example:
$ python main.py --alpha=1. --beta=2.
The code will save a video which illustrates the training procedure in the directory results/
defaultly.
Haibin Yu/ @HeroKillerEver