Skip to content

HomeStayMom/dlookr

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

dlookr

CRAN_Status_Badge Total Downloads

Overview

Diagnose, explore and transform data with dlookr.

Features:

  • Diagnose data quality.
  • Find appropriate scenarios to pursuit the follow-up analysis through data exploration and understanding.
  • Derive new variables or perform variable transformations.
  • Automatically generate reports for the above three tasks.
  • Supports quality diagnosis and EDA of table of DBMS.
    • version (≥ 0.3.2)

The name dlookr comes from looking at the data in the data analysis process.

Install dlookr

The released version is available on CRAN

install.packages("dlookr")

Or you can get the development version without vignettes from GitHub:

devtools::install_github("choonghyunryu/dlookr")

Or you can get the development version with vignettes from GitHub:

install.packages(c("nycflights13", "ISLR", "DBI", "RSQLite"))
devtools::install_github("choonghyunryu/dlookr", build_vignettes = TRUE)

Usage

dlookr includes several vignette files, which we use throughout the documentation.

Provided vignettes is as follows.

  • Data quality diagnosis for data.frame, tbl_df, and table of DBMS
  • Exploratory Data Analysis for data.frame, tbl_df, and table of DBMS
  • Data Transformation
  • Data diagnosis and EDA for table of DBMS
browseVignettes(package = "dlookr")

Data quality diagnosis

Data: nycflights13

To illustrate basic use of the dlookr package, use the flights data from the nycflights13 package. Once loading nycflights13 library, the flights data frame is available. The flights data frame contains departure and arrival information on all flights departing from NYC(i.e. JFK, LGA or EWR) in 2013.

library(nycflights13)
dim(flights)
#> [1] 336776     19
flights
#> # A tibble: 336,776 × 19
#>     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#>    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
#>  1  2013     1     1      517            515         2      830            819
#>  2  2013     1     1      533            529         4      850            830
#>  3  2013     1     1      542            540         2      923            850
#>  4  2013     1     1      544            545        -1     1004           1022
#>  5  2013     1     1      554            600        -6      812            837
#>  6  2013     1     1      554            558        -4      740            728
#>  7  2013     1     1      555            600        -5      913            854
#>  8  2013     1     1      557            600        -3      709            723
#>  9  2013     1     1      557            600        -3      838            846
#> 10  2013     1     1      558            600        -2      753            745
#> # … with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
#> #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

General diagnosis of all variables with diagnose()

diagnose() allows you to diagnose variables on a data frame. Like any other dplyr functions, the first argument is the tibble (or data frame). The second and subsequent arguments refer to variables within the data frame.

The variables of the tbl_df object returned by diagnose () are as follows.

  • variables : variable names
  • types : the data type of the variables
  • missing_count : number of missing values
  • missing_percent : percentage of missing values
  • unique_count : number of unique values
  • unique_rate : rate of unique value. unique_count / number of observation

For example, we can diagnose all variables in flights:

library(dlookr)
library(dplyr)

diagnose(flights)
#> # A tibble: 19 × 6
#>    variables      types   missing_count missing_percent unique_count unique_rate
#>    <chr>          <chr>           <int>           <dbl>        <int>       <dbl>
#>  1 year           integer             0           0                1  0.00000297
#>  2 month          integer             0           0               12  0.0000356 
#>  3 day            integer             0           0               31  0.0000920 
#>  4 dep_time       integer          8255           2.45          1319  0.00392   
#>  5 sched_dep_time integer             0           0             1021  0.00303   
#>  6 dep_delay      numeric          8255           2.45           528  0.00157   
#>  7 arr_time       integer          8713           2.59          1412  0.00419   
#>  8 sched_arr_time integer             0           0             1163  0.00345   
#>  9 arr_delay      numeric          9430           2.80           578  0.00172   
#> 10 carrier        charac…             0           0               16  0.0000475 
#> 11 flight         integer             0           0             3844  0.0114    
#> 12 tailnum        charac…          2512           0.746         4044  0.0120    
#> 13 origin         charac…             0           0                3  0.00000891
#> 14 dest           charac…             0           0              105  0.000312  
#> 15 air_time       numeric          9430           2.80           510  0.00151   
#> 16 distance       numeric             0           0              214  0.000635  
#> 17 hour           numeric             0           0               20  0.0000594 
#> 18 minute         numeric             0           0               60  0.000178  
#> 19 time_hour      POSIXct             0           0             6936  0.0206
  • Missing Value(NA) : Variables with many missing values, i.e. those with a missing_percent close to 100, should be excluded from the analysis.
  • Unique value : Variables with a unique value (unique_count = 1) are considered to be excluded from data analysis. And if the data type is not numeric (integer, numeric) and the number of unique values is equal to the number of observations (unique_rate = 1), then the variable is likely to be an identifier. Therefore, this variable is also not suitable for the analysis model.

year can be considered not to be used in the analysis model since unique_count is 1. However, you do not have to remove it if you configure date as a combination of year, month, and day.

For example, we can diagnose only a few selected variables:

# Select columns by name
diagnose(flights, year, month, day)
#> # A tibble: 3 × 6
#>   variables types   missing_count missing_percent unique_count unique_rate
#>   <chr>     <chr>           <int>           <dbl>        <int>       <dbl>
#> 1 year      integer             0               0            1  0.00000297
#> 2 month     integer             0               0           12  0.0000356 
#> 3 day       integer             0               0           31  0.0000920
# Select all columns between year and day (include)
diagnose(flights, year:day)
#> # A tibble: 3 × 6
#>   variables types   missing_count missing_percent unique_count unique_rate
#>   <chr>     <chr>           <int>           <dbl>        <int>       <dbl>
#> 1 year      integer             0               0            1  0.00000297
#> 2 month     integer             0               0           12  0.0000356 
#> 3 day       integer             0               0           31  0.0000920
# Select all columns except those from year to day (exclude)
diagnose(flights, -(year:day))
#> # A tibble: 16 × 6
#>    variables      types   missing_count missing_percent unique_count unique_rate
#>    <chr>          <chr>           <int>           <dbl>        <int>       <dbl>
#>  1 dep_time       integer          8255           2.45          1319  0.00392   
#>  2 sched_dep_time integer             0           0             1021  0.00303   
#>  3 dep_delay      numeric          8255           2.45           528  0.00157   
#>  4 arr_time       integer          8713           2.59          1412  0.00419   
#>  5 sched_arr_time integer             0           0             1163  0.00345   
#>  6 arr_delay      numeric          9430           2.80           578  0.00172   
#>  7 carrier        charac…             0           0               16  0.0000475 
#>  8 flight         integer             0           0             3844  0.0114    
#>  9 tailnum        charac…          2512           0.746         4044  0.0120    
#> 10 origin         charac…             0           0                3  0.00000891
#> 11 dest           charac…             0           0              105  0.000312  
#> 12 air_time       numeric          9430           2.80           510  0.00151   
#> 13 distance       numeric             0           0              214  0.000635  
#> 14 hour           numeric             0           0               20  0.0000594 
#> 15 minute         numeric             0           0               60  0.000178  
#> 16 time_hour      POSIXct             0           0             6936  0.0206

By using with dplyr, variables including missing values can be sorted by the weight of missing values.:

flights %>%
  diagnose() %>%
  select(-unique_count, -unique_rate) %>% 
  filter(missing_count > 0) %>% 
  arrange(desc(missing_count))
#> # A tibble: 6 × 4
#>   variables types     missing_count missing_percent
#>   <chr>     <chr>             <int>           <dbl>
#> 1 arr_delay numeric            9430           2.80 
#> 2 air_time  numeric            9430           2.80 
#> 3 arr_time  integer            8713           2.59 
#> 4 dep_time  integer            8255           2.45 
#> 5 dep_delay numeric            8255           2.45 
#> 6 tailnum   character          2512           0.746

Diagnosis of numeric variables with diagnose_numeric()

diagnose_numeric() diagnoses numeric(continuous and discrete) variables in a data frame. Usage is the same as diagnose() but returns more diagnostic information. However, if you specify a non-numeric variable in the second and subsequent argument list, the variable is automatically ignored.

The variables of the tbl_df object returned by diagnose_numeric() are as follows.

  • min : minimum value
  • Q1 : 1/4 quartile, 25th percentile
  • mean : arithmetic mean
  • median : median, 50th percentile
  • Q3 : 3/4 quartile, 75th percentile
  • max : maximum value
  • zero : number of observations with a value of 0
  • minus : number of observations with negative numbers
  • outlier : number of outliers

The summary() function summarizes the distribution of individual variables in the data frame and outputs it to the console. The summary values of numeric variables are min, Q1, mean, median, Q3 and max, which help to understand the distribution of data.

However, the result displayed on the console has the disadvantage that the analyst has to look at it with the eyes. However, when the summary information is returned in a data frame structure such as tbl_df, the scope of utilization is expanded. diagnose_numeric() supports this.

zero, minus, and outlier are useful measures to diagnose data integrity. For example, numerical data in some cases cannot have zero or negative numbers. A numeric variable called employee salary cannot have negative numbers or zeros. Therefore, this variable should be checked for the inclusion of zero or negative numbers in the data diagnosis process.

diagnose_numeric() can diagnose all numeric variables of flights as follows.:

diagnose_numeric(flights)
#> # A tibble: 14 × 10
#>    variables        min    Q1    mean median    Q3   max  zero  minus outlier
#>    <chr>          <dbl> <dbl>   <dbl>  <dbl> <dbl> <dbl> <int>  <int>   <int>
#>  1 year            2013  2013 2013      2013  2013  2013     0      0       0
#>  2 month              1     4    6.55      7    10    12     0      0       0
#>  3 day                1     8   15.7      16    23    31     0      0       0
#>  4 dep_time           1   907 1349.     1401  1744  2400     0      0       0
#>  5 sched_dep_time   106   906 1344.     1359  1729  2359     0      0       0
#>  6 dep_delay        -43    -5   12.6      -2    11  1301 16514 183575   43216
#>  7 arr_time           1  1104 1502.     1535  1940  2400     0      0       0
#>  8 sched_arr_time     1  1124 1536.     1556  1945  2359     0      0       0
#>  9 arr_delay        -86   -17    6.90     -5    14  1272  5409 188933   27880
#> 10 flight             1   553 1972.     1496  3465  8500     0      0       1
#> 11 air_time          20    82  151.      129   192   695     0      0    5448
#> 12 distance          17   502 1040.      872  1389  4983     0      0     715
#> 13 hour               1     9   13.2      13    17    23     0      0       0
#> 14 minute             0     8   26.2      29    44    59 60696      0       0

If a numeric variable can not logically have a negative or zero value, it can be used with filter() to easily find a variable that does not logically match:

diagnose_numeric(flights) %>% 
  filter(minus > 0 | zero > 0) 
#> # A tibble: 3 × 10
#>   variables   min    Q1  mean median    Q3   max  zero  minus outlier
#>   <chr>     <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <int>  <int>   <int>
#> 1 dep_delay   -43    -5 12.6      -2    11  1301 16514 183575   43216
#> 2 arr_delay   -86   -17  6.90     -5    14  1272  5409 188933   27880
#> 3 minute        0     8 26.2      29    44    59 60696      0       0

Diagnosis of categorical variables with diagnose_category()

diagnose_category() diagnoses the categorical(factor, ordered, character) variables of a data frame. The usage is similar to diagnose() but returns more diagnostic information. If you specify a non-categorical variable in the second and subsequent argument list, the variable is automatically ignored.

The top argument specifies the number of levels to return for each variable. The default is 10, which returns the top 10 level. Of course, if the number of levels is less than 10, all levels are returned.

The variables of the tbl_df object returned by diagnose_category() are as follows.

  • variables : variable names
  • levels: level names
  • N : number of observation
  • freq : number of observation at the levels
  • ratio : percentage of observation at the levels
  • rank : rank of occupancy ratio of levels

`diagnose_category() can diagnose all categorical variables of flights as follows.:

diagnose_category(flights)
#> # A tibble: 43 × 6
#>    variables levels      N  freq ratio  rank
#>    <chr>     <chr>   <int> <int> <dbl> <int>
#>  1 carrier   UA     336776 58665 17.4      1
#>  2 carrier   B6     336776 54635 16.2      2
#>  3 carrier   EV     336776 54173 16.1      3
#>  4 carrier   DL     336776 48110 14.3      4
#>  5 carrier   AA     336776 32729  9.72     5
#>  6 carrier   MQ     336776 26397  7.84     6
#>  7 carrier   US     336776 20536  6.10     7
#>  8 carrier   9E     336776 18460  5.48     8
#>  9 carrier   WN     336776 12275  3.64     9
#> 10 carrier   VX     336776  5162  1.53    10
#> # … with 33 more rows

In collaboration with filter() in the dplyr package, we can see that the tailnum variable is ranked in top 1 with 2,512 missing values in the case where the missing value is included in the top 10:

diagnose_category(flights) %>% 
  filter(is.na(levels))
#> # A tibble: 1 × 6
#>   variables levels      N  freq ratio  rank
#>   <chr>     <chr>   <int> <int> <dbl> <int>
#> 1 tailnum   <NA>   336776  2512 0.746     1

The following example returns a list where the level’s relative percentage is 0.01% or less. Note that the value of the top argument is set to a large value such as 500. If the default value of 10 was used, values below 0.01% would not be included in the list:

flights %>%
  diagnose_category(top = 500)  %>%
  filter(ratio <= 0.01)
#> # A tibble: 10 × 6
#>    variables levels      N  freq    ratio  rank
#>    <chr>     <chr>   <int> <int>    <dbl> <int>
#>  1 carrier   OO     336776    32 0.00950     16
#>  2 dest      JAC    336776    25 0.00742     97
#>  3 dest      PSP    336776    19 0.00564     98
#>  4 dest      EYW    336776    17 0.00505     99
#>  5 dest      HDN    336776    15 0.00445    100
#>  6 dest      MTJ    336776    15 0.00445    100
#>  7 dest      SBN    336776    10 0.00297    102
#>  8 dest      ANC    336776     8 0.00238    103
#>  9 dest      LEX    336776     1 0.000297   104
#> 10 dest      LGA    336776     1 0.000297   104

In the analytics model, you can also consider removing levels where the relative frequency is very small in the observations or, if possible, combining them together.

Diagnosing outliers with diagnose_outlier()

diagnose_outlier() diagnoses the outliers of the numeric (continuous and discrete) variables of the data frame. The usage is the same as diagnose().

The variables of the tbl_df object returned by diagnose_outlier() are as follows.

  • outliers_cnt : number of outliers
  • outliers_ratio : percent of outliers
  • outliers_mean : arithmetic average of outliers
  • with_mean : arithmetic average of with outliers
  • without_mean : arithmetic average of without outliers

diagnose_outlier() can diagnose outliers of all numerical variables on flights as follows:

diagnose_outlier(flights)
#> # A tibble: 14 × 6
#>    variables    outliers_cnt outliers_ratio outliers_mean with_mean without_mean
#>    <chr>               <int>          <dbl>         <dbl>     <dbl>        <dbl>
#>  1 year                    0       0                NaN     2013        2013    
#>  2 month                   0       0                NaN        6.55        6.55 
#>  3 day                     0       0                NaN       15.7        15.7  
#>  4 dep_time                0       0                NaN     1349.       1349.   
#>  5 sched_dep_t…            0       0                NaN     1344.       1344.   
#>  6 dep_delay           43216      12.8               93.1     12.6         0.444
#>  7 arr_time                0       0                NaN     1502.       1502.   
#>  8 sched_arr_t…            0       0                NaN     1536.       1536.   
#>  9 arr_delay           27880       8.28             121.       6.90       -3.69 
#> 10 flight                  1       0.000297        8500     1972.       1972.   
#> 11 air_time             5448       1.62             400.     151.        146.   
#> 12 distance              715       0.212           4955.    1040.       1032.   
#> 13 hour                    0       0                NaN       13.2        13.2  
#> 14 minute                  0       0                NaN       26.2        26.2

Numeric variables that contained outliers are easily found with filter().:

diagnose_outlier(flights) %>% 
  filter(outliers_cnt > 0) 
#> # A tibble: 5 × 6
#>   variables outliers_cnt outliers_ratio outliers_mean with_mean without_mean
#>   <chr>            <int>          <dbl>         <dbl>     <dbl>        <dbl>
#> 1 dep_delay        43216      12.8               93.1     12.6         0.444
#> 2 arr_delay        27880       8.28             121.       6.90       -3.69 
#> 3 flight               1       0.000297        8500     1972.       1972.   
#> 4 air_time          5448       1.62             400.     151.        146.   
#> 5 distance           715       0.212           4955.    1040.       1032.

The following example finds a numeric variable with an outlier ratio of 5% or more, and then returns the result of dividing mean of outliers by total mean in descending order:

diagnose_outlier(flights) %>% 
  filter(outliers_ratio > 5) %>% 
  mutate(rate = outliers_mean / with_mean) %>% 
  arrange(desc(rate)) %>% 
  select(-outliers_cnt)
#> # A tibble: 2 × 6
#>   variables outliers_ratio outliers_mean with_mean without_mean  rate
#>   <chr>              <dbl>         <dbl>     <dbl>        <dbl> <dbl>
#> 1 arr_delay           8.28         121.       6.90       -3.69  17.5 
#> 2 dep_delay          12.8           93.1     12.6         0.444  7.37

In cases where the mean of the outliers is large relative to the overall average, it may be desirable to impute or remove the outliers.

Visualization of outliers using plot_outlier()

plot_outlier() visualizes outliers of numerical variables(continuous and discrete) of data.frame. Usage is the same diagnose().

The plot derived from the numerical data diagnosis is as follows.

  • With outliers box plot
  • Without outliers box plot
  • With outliers histogram
  • Without outliers histogram

The following example uses diagnose_outlier(), plot_outlier(), and dplyr packages to visualize all numerical variables with an outlier ratio of 0.5% or higher.

flights %>%
  plot_outlier(diagnose_outlier(flights) %>% 
                 filter(outliers_ratio >= 0.5) %>% 
                 select(variables) %>% 
                 unlist())

Analysts should look at the results of the visualization to decide whether to remove or replace outliers. In some cases, you should consider removing variables with outliers from the data analysis model.

Looking at the results of the visualization, arr_delay shows that the observed values without outliers are similar to the normal distribution. In the case of a linear model, we might consider removing or imputing outliers. And air_time has a similar shape before and after removing outliers.

Exploratory Data Analysis

datasets

To illustrate the basic use of EDA in the dlookr package, I use a Carseats dataset. Carseats in the ISLR package is a simulated data set containing sales of child car seats at 400 different stores. This data is a data.frame created for the purpose of predicting sales volume.

library(ISLR)
str(Carseats)
#> 'data.frame':    400 obs. of  11 variables:
#>  $ Sales      : num  9.5 11.22 10.06 7.4 4.15 ...
#>  $ CompPrice  : num  138 111 113 117 141 124 115 136 132 132 ...
#>  $ Income     : num  73 48 35 100 64 113 105 81 110 113 ...
#>  $ Advertising: num  11 16 10 4 3 13 0 15 0 0 ...
#>  $ Population : num  276 260 269 466 340 501 45 425 108 131 ...
#>  $ Price      : num  120 83 80 97 128 72 108 120 124 124 ...
#>  $ ShelveLoc  : Factor w/ 3 levels "Bad","Good","Medium": 1 2 3 3 1 1 3 2 3 3 ...
#>  $ Age        : num  42 65 59 55 38 78 71 67 76 76 ...
#>  $ Education  : num  17 10 12 14 13 16 15 10 10 17 ...
#>  $ Urban      : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 2 2 1 1 ...
#>  $ US         : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 2 1 2 1 2 ...

The contents of individual variables are as follows. (Refer to ISLR::Carseats Man page)

  • Sales
    • Unit sales (in thousands) at each location
  • CompPrice
    • Price charged by competitor at each location
  • Income
    • Community income level (in thousands of dollars)
  • Advertising
    • Local advertising budget for company at each location (in thousands of dollars)
  • Population
    • Population size in region (in thousands)
  • Price
    • Price company charges for car seats at each site
  • ShelveLoc
    • A factor with levels Bad, Good and Medium indicating the quality of the shelving location for the car seats at each site
  • Age
    • Average age of the local population
  • Education
    • Education level at each location
  • Urban
    • A factor with levels No and Yes to indicate whether the store is in an urban or rural location
  • US
    • A factor with levels No and Yes to indicate whether the store is in the US or not

When data analysis is performed, data containing missing values is frequently encountered. However, ‘Carseats’ is complete data without missing values. So the following script created the missing values and saved them as carseats.

carseats <- ISLR::Carseats

suppressWarnings(RNGversion("3.5.0"))
set.seed(123)
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA

suppressWarnings(RNGversion("3.5.0"))
set.seed(456)
carseats[sample(seq(NROW(carseats)), 10), "Urban"] <- NA

Univariate data EDA

Calculating descriptive statistics using describe()

describe() computes descriptive statistics for numerical data. The descriptive statistics help determine the distribution of numerical variables. Like function of dplyr, the first argument is the tibble (or data frame). The second and subsequent arguments refer to variables within that data frame.

The variables of the tbl_df object returned by describe() are as follows.

  • n : number of observations excluding missing values
  • na : number of missing values
  • mean : arithmetic average
  • sd : standard deviation
  • se_mean : standard error mean. sd/sqrt(n)
  • IQR : interquartile range (Q3-Q1)
  • skewness : skewness
  • kurtosis : kurtosis
  • p25 : Q1. 25% percentile
  • p50 : median. 50% percentile
  • p75 : Q3. 75% percentile
  • p01, p05, p10, p20, p30 : 1%, 5%, 20%, 30% percentiles
  • p40, p60, p70, p80 : 40%, 60%, 70%, 80% percentiles
  • p90, p95, p99, p100 : 90%, 95%, 99%, 100% percentiles

For example, we can computes the statistics of all numerical variables in carseats:

describe(carseats)
#> # A tibble: 8 × 26
#>   described_variables     n    na   mean     sd se_mean    IQR skewness kurtosis
#>   <chr>               <int> <int>  <dbl>  <dbl>   <dbl>  <dbl>    <dbl>    <dbl>
#> 1 Sales                 400     0   7.50   2.82   0.141   3.93   0.186   -0.0809
#> 2 CompPrice             400     0 125.    15.3    0.767  20     -0.0428   0.0417
#> 3 Income                380    20  68.9   28.1    1.44   48.2    0.0449  -1.09  
#> 4 Advertising           400     0   6.64   6.65   0.333  12      0.640   -0.545 
#> 5 Population            400     0 265.   147.     7.37  260.    -0.0512  -1.20  
#> 6 Price                 400     0 116.    23.7    1.18   31     -0.125    0.452 
#> 7 Age                   400     0  53.3   16.2    0.810  26.2   -0.0772  -1.13  
#> 8 Education             400     0  13.9    2.62   0.131   4      0.0440  -1.30  
#> # … with 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>,
#> #   p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>,
#> #   p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>,
#> #   p100 <dbl>
  • skewness : The left-skewed distribution data that is the variables with large positive skewness should consider the log or sqrt transformations to follow the normal distribution. The variables Advertising seem to need to consider variable transformation.
  • mean and sd, se_mean : ThePopulation with a large standard error of the mean(se_mean) has low representativeness of the arithmetic mean(mean). The standard deviation(sd) is much larger than the arithmetic average.

The describe() function can be sorted by left or right skewed size(skewness) using dplyr.:

carseats %>%
  describe() %>%
  select(described_variables, skewness, mean, p25, p50, p75) %>% 
  filter(!is.na(skewness)) %>% 
  arrange(desc(abs(skewness)))
#> # A tibble: 8 × 6
#>   described_variables skewness   mean    p25    p50    p75
#>   <chr>                  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#> 1 Advertising           0.640    6.64   0      5     12   
#> 2 Sales                 0.186    7.50   5.39   7.49   9.32
#> 3 Price                -0.125  116.   100    117    131   
#> 4 Age                  -0.0772  53.3   39.8   54.5   66   
#> 5 Population           -0.0512 265.   139    272    398.  
#> 6 Income                0.0449  68.9   42.8   69     91   
#> 7 Education             0.0440  13.9   12     14     16   
#> 8 CompPrice            -0.0428 125.   115    125    135

The describe() function supports the group_by() function syntax of the dplyr package.

carseats %>%
  group_by(US) %>% 
  describe(Sales, Income) 
#> # A tibble: 4 × 27
#>   described_varia… US        n    na  mean    sd se_mean   IQR skewness kurtosis
#>   <chr>            <fct> <int> <int> <dbl> <dbl>   <dbl> <dbl>    <dbl>    <dbl>
#> 1 Income           No      130    12 65.8  28.2    2.48  50      0.100    -1.14 
#> 2 Income           Yes     250     8 70.4  27.9    1.77  48      0.0199   -1.06 
#> 3 Sales            No      142     0  6.82  2.60   0.218  3.44   0.323     0.808
#> 4 Sales            Yes     258     0  7.87  2.88   0.179  4.23   0.0760   -0.326
#> # … with 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>,
#> #   p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>,
#> #   p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>,
#> #   p100 <dbl>
carseats %>%
  group_by(US, Urban) %>% 
  describe(Sales, Income) 
#> # A tibble: 12 × 28
#>    described_variab… US    Urban     n    na  mean    sd se_mean    IQR skewness
#>    <chr>             <fct> <fct> <int> <int> <dbl> <dbl>   <dbl>  <dbl>    <dbl>
#>  1 Income            No    No       42     4 60.2  29.1    4.49  45.2    0.408  
#>  2 Income            No    Yes      84     8 69.5  27.4    2.99  47     -0.0497 
#>  3 Income            No    <NA>      4     0 48.2  24.7   12.3   40.8   -0.0496 
#>  4 Income            Yes   No       65     4 70.5  29.9    3.70  48      0.0736 
#>  5 Income            Yes   Yes     179     4 70.3  27.2    2.03  46.5    0.00490
#>  6 Income            Yes   <NA>      6     0 75.3  34.3   14.0   47.2   -0.412  
#>  7 Sales             No    No       46     0  6.46  2.72   0.402  3.15   0.0889 
#>  8 Sales             No    Yes      92     0  7.00  2.58   0.269  3.49   0.492  
#>  9 Sales             No    <NA>      4     0  6.99  1.28   0.639  0.827  1.69   
#> 10 Sales             Yes   No       69     0  8.23  2.65   0.319  4.1   -0.0212 
#> 11 Sales             Yes   Yes     183     0  7.74  2.97   0.219  4.11   0.123  
#> 12 Sales             Yes   <NA>      6     0  7.61  2.61   1.06   3.25   0.489  
#> # … with 18 more variables: kurtosis <dbl>, p00 <dbl>, p01 <dbl>, p05 <dbl>,
#> #   p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
#> #   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
#> #   p99 <dbl>, p100 <dbl>
Test of normality on numeric variables using normality()

normality() performs a normality test on numerical data. Shapiro-Wilk normality test is performed. When the number of observations is greater than 5000, it is tested after extracting 5000 samples by random simple sampling.

The variables of tbl_df object returned by normality() are as follows.

  • statistic : Statistics of the Shapiro-Wilk test
  • p_value : p-value of the Shapiro-Wilk test
  • sample : Number of sample observations performed Shapiro-Wilk test

normality() performs the normality test for all numerical variables of carseats as follows.:

normality(carseats)
#> # A tibble: 8 × 4
#>   vars        statistic  p_value sample
#>   <chr>           <dbl>    <dbl>  <dbl>
#> 1 Sales           0.995 2.54e- 1    400
#> 2 CompPrice       0.998 9.77e- 1    400
#> 3 Income          0.961 1.52e- 8    400
#> 4 Advertising     0.874 1.49e-17    400
#> 5 Population      0.952 4.08e-10    400
#> 6 Price           0.996 3.90e- 1    400
#> 7 Age             0.957 1.86e- 9    400
#> 8 Education       0.924 2.43e-13    400

You can use dplyr to sort variables that do not follow a normal distribution in order of p_value:

carseats %>%
  normality() %>%
  filter(p_value <= 0.01) %>% 
  arrange(abs(p_value))
#> # A tibble: 5 × 4
#>   vars        statistic  p_value sample
#>   <chr>           <dbl>    <dbl>  <dbl>
#> 1 Advertising     0.874 1.49e-17    400
#> 2 Education       0.924 2.43e-13    400
#> 3 Population      0.952 4.08e-10    400
#> 4 Age             0.957 1.86e- 9    400
#> 5 Income          0.961 1.52e- 8    400

In particular, the Advertising variable is considered to be the most out of the normal distribution.

The normality() function supports the group_by() function syntax in the dplyr package.

carseats %>%
  group_by(ShelveLoc, US) %>%
  normality(Income) %>% 
  arrange(desc(p_value))
#> # A tibble: 6 × 6
#>   variable ShelveLoc US    statistic  p_value sample
#>   <chr>    <fct>     <fct>     <dbl>    <dbl>  <dbl>
#> 1 Income   Bad       No        0.969 0.470        34
#> 2 Income   Bad       Yes       0.958 0.0343       62
#> 3 Income   Good      No        0.902 0.0328       24
#> 4 Income   Good      Yes       0.955 0.0296       61
#> 5 Income   Medium    No        0.947 0.00319      84
#> 6 Income   Medium    Yes       0.961 0.000948    135

The Income variable does not follow the normal distribution. However, the case where US is No and ShelveLoc is Good and Bad at the significance level of 0.01, it follows the normal distribution.

The following example performs normality test of log(Income) for each combination of ShelveLoc and US categorical variables to search for variables that follow the normal distribution.

carseats %>%
  mutate(log_income = log(Income)) %>%
  group_by(ShelveLoc, US) %>%
  normality(log_income) %>%
  filter(p_value > 0.01)
#> # A tibble: 1 × 6
#>   variable   ShelveLoc US    statistic p_value sample
#>   <chr>      <fct>     <fct>     <dbl>   <dbl>  <dbl>
#> 1 log_income Bad       No        0.940  0.0737     34

Visualization of normality of numerical variables using plot_normality()

plot_normality() visualizes the normality of numeric data.

The information that plot_normality() visualizes is as follows.

  • Histogram of original data
  • Q-Q plot of original data
  • histogram of log transformed data
  • Histogram of square root transformed data

In the data analysis process, it often encounters numerical data that follows the power-law distribution. Since the numerical data that follows the power-law distribution is converted into a normal distribution by performing the log or sqrt transformation, so draw a histogram of the log and sqrt transformed data.

plot_normality() can also specify several variables like normality() function.

# Select columns by name
plot_normality(carseats, Sales, CompPrice)

The plot_normality() function also supports the group_by() function syntax in the dplyr package.

carseats %>%
  filter(ShelveLoc == "Good") %>%
  group_by(US) %>%
  plot_normality(Income)

EDA of bivariate data

Calculation of correlation coefficient using correlate()

correlate() calculates the correlation coefficient of all combinations of carseats numerical variables as follows:

correlate(carseats)
#> # A tibble: 56 × 3
#>    var1        var2      coef_corr
#>    <fct>       <fct>         <dbl>
#>  1 CompPrice   Sales        0.0641
#>  2 Income      Sales        0.151 
#>  3 Advertising Sales        0.270 
#>  4 Population  Sales        0.0505
#>  5 Price       Sales       -0.445 
#>  6 Age         Sales       -0.232 
#>  7 Education   Sales       -0.0520
#>  8 Sales       CompPrice    0.0641
#>  9 Income      CompPrice   -0.0761
#> 10 Advertising CompPrice   -0.0242
#> # … with 46 more rows

The following example performs a normality test only on combinations that include several selected variables.

# Select columns by name
correlate(carseats, Sales, CompPrice, Income)
#> # A tibble: 21 × 3
#>    var1      var2        coef_corr
#>    <fct>     <fct>           <dbl>
#>  1 CompPrice Sales          0.0641
#>  2 Income    Sales          0.151 
#>  3 Sales     CompPrice      0.0641
#>  4 Income    CompPrice     -0.0761
#>  5 Sales     Income         0.151 
#>  6 CompPrice Income        -0.0761
#>  7 Sales     Advertising    0.270 
#>  8 CompPrice Advertising   -0.0242
#>  9 Income    Advertising    0.0435
#> 10 Sales     Population     0.0505
#> # … with 11 more rows

correlate() produces two pairs of variables. So the following example uses filter() to get the correlation coefficient for a pair of variable combinations:

carseats %>%
  correlate(Sales:Income) %>%
  filter(as.integer(var1) > as.integer(var2))
#> # A tibble: 3 × 3
#>   var1      var2      coef_corr
#>   <fct>     <fct>         <dbl>
#> 1 CompPrice Sales        0.0641
#> 2 Income    Sales        0.151 
#> 3 Income    CompPrice   -0.0761

The correlate() also supports the group_by() function syntax in the dplyr package.

carseats %>%
  filter(ShelveLoc == "Good") %>%
  group_by(Urban, US) %>%
  correlate(Sales) %>%
  filter(abs(coef_corr) > 0.5)
#> # A tibble: 10 × 5
#>    Urban US    var1  var2       coef_corr
#>    <fct> <fct> <fct> <fct>          <dbl>
#>  1 No    No    Sales Population    -0.530
#>  2 No    No    Sales Price         -0.838
#>  3 No    Yes   Sales Price         -0.630
#>  4 Yes   No    Sales Price         -0.833
#>  5 Yes   No    Sales Age           -0.649
#>  6 Yes   Yes   Sales Price         -0.619
#>  7 <NA>  Yes   Sales CompPrice      0.858
#>  8 <NA>  Yes   Sales Population    -0.806
#>  9 <NA>  Yes   Sales Price         -0.901
#> 10 <NA>  Yes   Sales Age           -0.984
Visualization of the correlation matrix using plot.correlate()

plot.correlate() visualizes the correlation matrix.

carseats %>% 
  correlate() %>%
  plot()

plot.correlate() can also specify multiple variables with correlate() function. The following is a visualization of the correlation matrix including several selected variables.

# Select columns by name
carseats %>% 
  correlate(Sales, Price) %>%
  plot()

The plot.correlate() function also supports the group_by() function syntax in the dplyr package.

carseats %>%
  filter(ShelveLoc == "Good") %>%
  group_by(Urban, US) %>%
  correlate(Sales) %>% 
  plot()

EDA based on target variable

Definition of target variable

To perform EDA based on target variable, you need to create a target_by class object. target_by() creates a target_by class with an object inheriting data.frame or data.frame. target_by() is similar to group_by() in dplyr which creates grouped_df. The difference is that you specify only one variable.

The following is an example of specifying US as target variable in carseats data.frame.:

categ <- target_by(carseats, US)
EDA when target variable is categorical variable

Let’s perform EDA when the target variable is a categorical variable. When the categorical variable US is the target variable, we examine the relationship between the target variable and the predictor.

Cases where predictors are numeric variable:

relate() shows the relationship between the target variable and the predictor. The following example shows the relationship between Sales and the target variable US. The predictor Sales is a numeric variable. In this case, the descriptive statistics are shown for each level of the target variable.

# If the variable of interest is a numerical variable
cat_num <- relate(categ, Sales)
cat_num
#> # A tibble: 3 × 27
#>   described_varia… US        n    na  mean    sd se_mean   IQR skewness kurtosis
#>   <chr>            <fct> <int> <int> <dbl> <dbl>   <dbl> <dbl>    <dbl>    <dbl>
#> 1 Sales            No      142     0  6.82  2.60   0.218  3.44   0.323    0.808 
#> 2 Sales            Yes     258     0  7.87  2.88   0.179  4.23   0.0760  -0.326 
#> 3 Sales            total   400     0  7.50  2.82   0.141  3.93   0.186   -0.0809
#> # … with 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>,
#> #   p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>,
#> #   p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>,
#> #   p100 <dbl>
summary(cat_num)
#>  described_variables     US          n               na         mean      
#>  Length:3            No   :1   Min.   :142.0   Min.   :0   Min.   :6.823  
#>  Class :character    Yes  :1   1st Qu.:200.0   1st Qu.:0   1st Qu.:7.160  
#>  Mode  :character    total:1   Median :258.0   Median :0   Median :7.496  
#>                                Mean   :266.7   Mean   :0   Mean   :7.395  
#>                                3rd Qu.:329.0   3rd Qu.:0   3rd Qu.:7.682  
#>                                Max.   :400.0   Max.   :0   Max.   :7.867  
#>        sd           se_mean            IQR           skewness      
#>  Min.   :2.603   Min.   :0.1412   Min.   :3.442   Min.   :0.07603  
#>  1st Qu.:2.713   1st Qu.:0.1602   1st Qu.:3.686   1st Qu.:0.13080  
#>  Median :2.824   Median :0.1791   Median :3.930   Median :0.18556  
#>  Mean   :2.768   Mean   :0.1796   Mean   :3.866   Mean   :0.19489  
#>  3rd Qu.:2.851   3rd Qu.:0.1988   3rd Qu.:4.077   3rd Qu.:0.25432  
#>  Max.   :2.877   Max.   :0.2184   Max.   :4.225   Max.   :0.32308  
#>     kurtosis             p00              p01              p05       
#>  Min.   :-0.32638   Min.   :0.0000   Min.   :0.4675   Min.   :3.147  
#>  1st Qu.:-0.20363   1st Qu.:0.0000   1st Qu.:0.6868   1st Qu.:3.148  
#>  Median :-0.08088   Median :0.0000   Median :0.9062   Median :3.149  
#>  Mean   : 0.13350   Mean   :0.1233   Mean   :1.0072   Mean   :3.183  
#>  3rd Qu.: 0.36344   3rd Qu.:0.1850   3rd Qu.:1.2771   3rd Qu.:3.200  
#>  Max.   : 0.80776   Max.   :0.3700   Max.   :1.6480   Max.   :3.252  
#>       p10             p20             p25             p30       
#>  Min.   :3.917   Min.   :4.754   Min.   :5.080   Min.   :5.306  
#>  1st Qu.:4.018   1st Qu.:4.910   1st Qu.:5.235   1st Qu.:5.587  
#>  Median :4.119   Median :5.066   Median :5.390   Median :5.867  
#>  Mean   :4.073   Mean   :5.051   Mean   :5.411   Mean   :5.775  
#>  3rd Qu.:4.152   3rd Qu.:5.199   3rd Qu.:5.576   3rd Qu.:6.010  
#>  Max.   :4.184   Max.   :5.332   Max.   :5.763   Max.   :6.153  
#>       p40             p50             p60             p70       
#>  Min.   :5.994   Min.   :6.660   Min.   :7.496   Min.   :7.957  
#>  1st Qu.:6.301   1st Qu.:7.075   1st Qu.:7.787   1st Qu.:8.386  
#>  Median :6.608   Median :7.490   Median :8.078   Median :8.815  
#>  Mean   :6.506   Mean   :7.313   Mean   :8.076   Mean   :8.740  
#>  3rd Qu.:6.762   3rd Qu.:7.640   3rd Qu.:8.366   3rd Qu.:9.132  
#>  Max.   :6.916   Max.   :7.790   Max.   :8.654   Max.   :9.449  
#>       p75             p80              p90              p95       
#>  Min.   :8.523   Min.   : 8.772   Min.   : 9.349   Min.   :11.28  
#>  1st Qu.:8.921   1st Qu.: 9.265   1st Qu.:10.325   1st Qu.:11.86  
#>  Median :9.320   Median : 9.758   Median :11.300   Median :12.44  
#>  Mean   :9.277   Mean   : 9.665   Mean   :10.795   Mean   :12.08  
#>  3rd Qu.:9.654   3rd Qu.:10.111   3rd Qu.:11.518   3rd Qu.:12.49  
#>  Max.   :9.988   Max.   :10.464   Max.   :11.736   Max.   :12.54  
#>       p99             p100      
#>  Min.   :13.64   Min.   :14.90  
#>  1st Qu.:13.78   1st Qu.:15.59  
#>  Median :13.91   Median :16.27  
#>  Mean   :13.86   Mean   :15.81  
#>  3rd Qu.:13.97   3rd Qu.:16.27  
#>  Max.   :14.03   Max.   :16.27

plot() visualizes the relate class object created by relate() as the relationship between the target variable and the predictor variable. The relationship between US and Sales is visualized by density plot.

plot(cat_num)

Cases where predictors are categorical variable:

The following example shows the relationship between ShelveLoc and the target variable US. The predictor variable ShelveLoc is a categorical variable. In this case, it shows the contingency table of two variables. The summary() function performs independence test on the contingency table.

# If the variable of interest is a categorical variable
cat_cat <- relate(categ, ShelveLoc)
cat_cat
#>      ShelveLoc
#> US    Bad Good Medium
#>   No   34   24     84
#>   Yes  62   61    135
summary(cat_cat)
#> Call: xtabs(formula = formula_str, data = data, addNA = TRUE)
#> Number of cases in table: 400 
#> Number of factors: 2 
#> Test for independence of all factors:
#>  Chisq = 2.7397, df = 2, p-value = 0.2541

plot() visualizes the relationship between the target variable and the predictor. The relationship between US and ShelveLoc is represented by a mosaics plot.

plot(cat_cat)

EDA when target variable is numerical variable

Let’s perform EDA when the target variable is numeric. When the numeric variable Sales is the target variable, we examine the relationship between the target variable and the predictor.

# If the variable of interest is a numerical variable
num <- target_by(carseats, Sales)

Cases where predictors are numeric variable:

The following example shows the relationship between Price and the target variable Sales. The predictor variable Price is a numeric variable. In this case, it shows the result of a simple linear model of the target ~ predictor formula. The summary() function expresses the details of the model.

# If the variable of interest is a numerical variable
num_num <- relate(num, Price)
num_num
#> 
#> Call:
#> lm(formula = formula_str, data = data)
#> 
#> Coefficients:
#> (Intercept)        Price  
#>    13.64192     -0.05307
summary(num_num)
#> 
#> Call:
#> lm(formula = formula_str, data = data)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -6.5224 -1.8442 -0.1459  1.6503  7.5108 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) 13.641915   0.632812  21.558   <2e-16 ***
#> Price       -0.053073   0.005354  -9.912   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 2.532 on 398 degrees of freedom
#> Multiple R-squared:  0.198,  Adjusted R-squared:  0.196 
#> F-statistic: 98.25 on 1 and 398 DF,  p-value: < 2.2e-16

plot() visualizes the relationship between the target and predictor variables. The relationship between Sales and Price is visualized with a scatter plot. The figure on the left shows the scatter plot of Sales and Price and the confidence interval of the regression line and regression line. The figure on the right shows the relationship between the original data and the predicted values of the linear model as a scatter plot. If there is a linear relationship between the two variables, the scatter plot of the observations converges on the red diagonal line.

plot(num_num)

Cases where predictors are categorical variable:

The following example shows the relationship between ShelveLoc and the target variable Sales. The predictor ShelveLoc is a categorical variable and shows the result of one-way ANOVA of target ~ predictor relationship. The results are expressed in terms of ANOVA. The summary() function shows the regression coefficients for each level of the predictor. In other words, it shows detailed information about simple regression analysis of target ~ predictor relationship.

# If the variable of interest is a categorical variable
num_cat <- relate(num, ShelveLoc)
num_cat
#> Analysis of Variance Table
#> 
#> Response: Sales
#>            Df Sum Sq Mean Sq F value    Pr(>F)    
#> ShelveLoc   2 1009.5  504.77   92.23 < 2.2e-16 ***
#> Residuals 397 2172.7    5.47                      
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(num_cat)
#> 
#> Call:
#> lm(formula = formula(formula_str), data = data)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -7.3066 -1.6282 -0.0416  1.5666  6.1471 
#> 
#> Coefficients:
#>                 Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)       5.5229     0.2388  23.131  < 2e-16 ***
#> ShelveLocGood     4.6911     0.3484  13.464  < 2e-16 ***
#> ShelveLocMedium   1.7837     0.2864   6.229  1.2e-09 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 2.339 on 397 degrees of freedom
#> Multiple R-squared:  0.3172, Adjusted R-squared:  0.3138 
#> F-statistic: 92.23 on 2 and 397 DF,  p-value: < 2.2e-16

plot() visualizes the relationship between the target variable and the predictor. The relationship between Sales and ShelveLoc is represented by a box plot.

plot(num_cat)

Data Transformation

dlookr imputes missing values and outliers and resolves skewed data. It also provides the ability to bin continuous variables as categorical variables.

Here is a list of the data conversion functions and functions provided by dlookr:

  • find_na() finds a variable that contains the missing values variable, and imputate_na() imputes the missing values.
  • find_outliers() finds a variable that contains the outliers, and imputate_outlier() imputes the outlier.
  • summary.imputation() and plot.imputation() provide information and visualization of the imputed variables.
  • find_skewness() finds the variables of the skewed data, and transform() performs the resolving of the skewed data.
  • transform() also performs standardization of numeric variables.
  • summary.transform() and plot.transform() provide information and visualization of transformed variables.
  • binning() and binning_by() convert binational data into categorical data.
  • print.bins() and summary.bins() show and summarize the binning results.
  • plot.bins() and plot.optimal_bins() provide visualization of the binning result.
  • transformation_report() performs the data transform and reports the result.

Imputation of missing values

imputes the missing value with imputate_na()

imputate_na() imputes the missing value contained in the variable. The predictor with missing values support both numeric and categorical variables, and supports the following method.

  • predictor is numerical variable
    • “mean” : arithmetic mean
    • “median” : median
    • “mode” : mode
    • “knn” : K-nearest neighbors
      • target variable must be specified
    • “rpart” : Recursive Partitioning and Regression Trees
      • target variable must be specified
    • “mice” : Multivariate Imputation by Chained Equations
      • target variable must be specified
      • random seed must be set
  • predictor is categorical variable
    • “mode” : mode
    • “rpart” : Recursive Partitioning and Regression Trees
      • target variable must be specified
    • “mice” : Multivariate Imputation by Chained Equations
      • target variable must be specified
      • random seed must be set

In the following example, imputate_na() imputes the missing value of Income, a numeric variable of carseats, using the “rpart” method. summary() summarizes missing value imputation information, and plot() visualizes missing information.

income <- imputate_na(carseats, Income, US, method = "rpart")

# result of imputation
income
#>   [1]  73.00000  48.00000  35.00000 100.00000  64.00000 113.00000 105.00000
#>   [8]  81.00000 110.00000 113.00000  78.00000  94.00000  35.00000  28.00000
#>  [15] 117.00000  95.00000  76.75000  68.70968 110.00000  76.00000  90.00000
#>  [22]  29.00000  46.00000  31.00000 119.00000  32.00000 115.00000 118.00000
#>  [29]  74.00000  99.00000  94.00000  58.00000  32.00000  38.00000  54.00000
#>  [36]  84.00000  76.00000  41.00000  73.00000  69.27778  98.00000  53.00000
#>  [43]  69.00000  42.00000  79.00000  63.00000  90.00000  98.00000  52.00000
#>  [50]  93.00000  32.00000  90.00000  40.00000  64.00000 103.00000  81.00000
#>  [57]  82.00000  91.00000  93.00000  71.00000 102.00000  32.00000  45.00000
#>  [64]  88.00000  67.00000  26.00000  92.00000  61.00000  69.00000  59.00000
#>  [71]  81.00000  51.00000  45.00000  90.00000  68.00000 111.00000  87.00000
#>  [78]  71.00000  48.00000  67.00000 100.00000  72.00000  83.00000  36.00000
#>  [85]  25.00000 103.00000  84.00000  67.00000  42.00000  66.00000  22.00000
#>  [92]  46.00000 113.00000  30.00000  88.93750  25.00000  42.00000  82.00000
#>  [99]  77.00000  47.00000  69.00000  93.00000  22.00000  91.00000  96.00000
#> [106] 100.00000  33.00000 107.00000  79.00000  65.00000  62.00000 118.00000
#> [113]  99.00000  29.00000  87.00000  68.70968  75.00000  53.00000  88.00000
#> [120]  94.00000 105.00000  89.00000 100.00000 103.00000 113.00000  98.33333
#> [127]  68.00000  48.00000 100.00000 120.00000  84.00000  69.00000  87.00000
#> [134]  98.00000  31.00000  94.00000  75.00000  42.00000 103.00000  62.00000
#> [141]  60.00000  42.00000  84.00000  88.00000  68.00000  63.00000  83.00000
#> [148]  54.00000 119.00000 120.00000  84.00000  58.00000  78.00000  36.00000
#> [155]  69.00000  72.00000  34.00000  58.00000  90.00000  60.00000  28.00000
#> [162]  21.00000  83.53846  64.00000  64.00000  58.00000  67.00000  73.00000
#> [169]  89.00000  41.00000  39.00000 106.00000 102.00000  91.00000  24.00000
#> [176]  89.00000  69.27778  72.00000  85.00000  25.00000 112.00000  83.00000
#> [183]  60.00000  74.00000  33.00000 100.00000  51.00000  32.00000  37.00000
#> [190] 117.00000  37.00000  42.00000  26.00000  70.00000  98.00000  93.00000
#> [197]  28.00000  61.00000  80.00000  88.00000  92.00000  83.00000  78.00000
#> [204]  82.00000  80.00000  22.00000  67.00000 105.00000  98.33333  21.00000
#> [211]  41.00000 118.00000  69.00000  84.00000 115.00000  83.00000  43.75000
#> [218]  44.00000  61.00000  79.00000 120.00000  73.47368 119.00000  45.00000
#> [225]  82.00000  25.00000  33.00000  64.00000  73.00000 104.00000  60.00000
#> [232]  69.00000  80.00000  76.00000  62.00000  32.00000  34.00000  28.00000
#> [239]  24.00000 105.00000  80.00000  63.00000  46.00000  25.00000  30.00000
#> [246]  43.00000  56.00000 114.00000  52.00000  67.00000 105.00000 111.00000
#> [253]  97.00000  24.00000 104.00000  81.00000  40.00000  62.00000  38.00000
#> [260]  36.00000 117.00000  42.00000  73.47368  26.00000  29.00000  35.00000
#> [267]  93.00000  82.00000  57.00000  69.00000  26.00000  56.00000  33.00000
#> [274] 106.00000  93.00000 119.00000  69.00000  48.00000 113.00000  57.00000
#> [281]  86.00000  69.00000  96.00000 110.00000  46.00000  26.00000 118.00000
#> [288]  44.00000  40.00000  77.00000 111.00000  70.00000  66.00000  84.00000
#> [295]  76.00000  35.00000  44.00000  83.00000  63.00000  40.00000  78.00000
#> [302]  93.00000  77.00000  52.00000  98.00000  29.00000  32.00000  92.00000
#> [309]  80.00000 111.00000  65.00000  68.00000 117.00000  81.00000  56.57895
#> [316]  21.00000  36.00000  30.00000  72.00000  45.00000  70.00000  39.00000
#> [323]  50.00000 105.00000  65.00000  69.00000  30.00000  38.00000  66.00000
#> [330]  54.00000  59.00000  63.00000  33.00000  60.00000 117.00000  70.00000
#> [337]  35.00000  38.00000  24.00000  44.00000  29.00000 120.00000 102.00000
#> [344]  42.00000  80.00000  68.00000  76.75000  39.00000 102.00000  27.00000
#> [351]  51.83333 115.00000 103.00000  67.00000  31.00000 100.00000 109.00000
#> [358]  73.00000  96.00000  62.00000  86.00000  25.00000  55.00000  51.83333
#> [365]  21.00000  30.00000  56.00000 106.00000  22.00000 100.00000  41.00000
#> [372]  81.00000  68.66667  68.88889  47.00000  46.00000  60.00000  61.00000
#> [379]  88.00000 111.00000  64.00000  65.00000  28.00000 117.00000  37.00000
#> [386]  73.00000 116.00000  73.00000  89.00000  42.00000  75.00000  63.00000
#> [393]  42.00000  51.00000  58.00000 108.00000  81.17647  26.00000  79.00000
#> [400]  37.00000
#> attr(,"var_type")
#> [1] "numerical"
#> attr(,"method")
#> [1] "rpart"
#> attr(,"na_pos")
#>  [1]  17  18  40  95 116 126 163 177 179 209 217 222 263 315 347 351 364 373 374
#> [20] 397
#> attr(,"type")
#> [1] "missing values"
#> attr(,"message")
#> [1] "complete imputation"
#> attr(,"success")
#> [1] TRUE
#> attr(,"class")
#> [1] "imputation" "numeric"

# summary of imputation
summary(income)
#> * Impute missing values based on Recursive Partitioning and Regression Trees
#>  - method : rpart
#> 
#> * Information of Imputation (before vs after)
#>                     Original     Imputation  
#> described_variables "value"      "value"     
#> n                   "380"        "400"       
#> na                  "20"         " 0"        
#> mean                "68.86053"   "69.05073"  
#> sd                  "28.09161"   "27.57382"  
#> se_mean             "1.441069"   "1.378691"  
#> IQR                 "48.25"      "46.00"     
#> skewness            "0.04490600" "0.02935732"
#> kurtosis            "-1.089201"  "-1.035086" 
#> p00                 "21"         "21"        
#> p01                 "21.79"      "21.99"     
#> p05                 "26"         "26"        
#> p10                 "30.0"       "30.9"      
#> p20                 "39"         "40"        
#> p25                 "42.75"      "44.00"     
#> p30                 "48.00000"   "51.58333"  
#> p40                 "62"         "63"        
#> p50                 "69"         "69"        
#> p60                 "78.0"       "77.4"      
#> p70                 "86.3"       "84.3"      
#> p75                 "91"         "90"        
#> p80                 "96.2"       "96.0"      
#> p90                 "108.1"      "106.1"     
#> p95                 "115.05"     "115.00"    
#> p99                 "119.21"     "119.01"    
#> p100                "120"        "120"

# viz of imputation
plot(income)

The following imputes the categorical variable urban by the “mice” method.

library(mice)
#> 
#> Attaching package: 'mice'
#> The following object is masked from 'package:stats':
#> 
#>     filter
#> The following objects are masked from 'package:base':
#> 
#>     cbind, rbind

urban <- imputate_na(carseats, Urban, US, method = "mice")
#> 
#>  iter imp variable
#>   1   1  Income  Urban
#>   1   2  Income  Urban
#>   1   3  Income  Urban
#>   1   4  Income  Urban
#>   1   5  Income  Urban
#>   2   1  Income  Urban
#>   2   2  Income  Urban
#>   2   3  Income  Urban
#>   2   4  Income  Urban
#>   2   5  Income  Urban
#>   3   1  Income  Urban
#>   3   2  Income  Urban
#>   3   3  Income  Urban
#>   3   4  Income  Urban
#>   3   5  Income  Urban
#>   4   1  Income  Urban
#>   4   2  Income  Urban
#>   4   3  Income  Urban
#>   4   4  Income  Urban
#>   4   5  Income  Urban
#>   5   1  Income  Urban
#>   5   2  Income  Urban
#>   5   3  Income  Urban
#>   5   4  Income  Urban
#>   5   5  Income  Urban

# result of imputation
urban
#>   [1] Yes Yes Yes Yes Yes No  Yes Yes No  No  No  Yes Yes Yes Yes No  Yes Yes
#>  [19] No  Yes Yes No  Yes Yes Yes No  No  Yes Yes Yes Yes Yes No  Yes Yes Yes
#>  [37] No  Yes Yes No  No  Yes Yes Yes Yes Yes No  Yes Yes Yes Yes Yes Yes Yes
#>  [55] No  Yes Yes Yes Yes Yes Yes No  Yes Yes No  No  Yes Yes Yes Yes Yes No 
#>  [73] Yes No  No  No  Yes No  Yes Yes Yes Yes Yes No  No  No  Yes No  Yes No 
#>  [91] No  Yes Yes No  Yes Yes No  Yes No  No  No  Yes No  Yes Yes Yes No  Yes
#> [109] Yes No  Yes Yes Yes Yes Yes Yes No  Yes Yes Yes Yes Yes Yes No  Yes No 
#> [127] Yes Yes Yes No  Yes No  Yes Yes Yes No  No  Yes Yes No  Yes Yes Yes Yes
#> [145] No  Yes Yes No  No  Yes No  No  No  No  No  Yes Yes No  No  No  No  No 
#> [163] Yes No  No  Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Yes No  Yes No  Yes
#> [181] Yes Yes Yes Yes No  Yes No  Yes Yes No  No  Yes No  Yes Yes Yes Yes Yes
#> [199] Yes Yes No  Yes No  Yes Yes Yes Yes No  Yes No  No  Yes Yes Yes Yes Yes
#> [217] Yes No  Yes Yes Yes Yes Yes Yes No  Yes Yes Yes No  No  No  No  Yes No 
#> [235] No  Yes Yes Yes Yes Yes Yes Yes No  Yes Yes No  Yes Yes Yes Yes Yes Yes
#> [253] Yes No  Yes Yes Yes Yes No  No  Yes Yes Yes Yes Yes Yes No  No  Yes Yes
#> [271] Yes Yes Yes Yes Yes Yes Yes Yes No  Yes Yes No  Yes No  No  Yes No  Yes
#> [289] No  Yes No  Yes Yes Yes Yes No  Yes Yes Yes No  Yes Yes Yes Yes Yes Yes
#> [307] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  No  No  Yes Yes Yes Yes
#> [325] Yes Yes Yes Yes Yes Yes No  Yes Yes Yes Yes Yes Yes Yes No  Yes Yes No 
#> [343] No  Yes No  Yes No  No  Yes No  No  No  Yes No  Yes Yes Yes Yes Yes Yes
#> [361] No  No  Yes Yes Yes No  No  Yes No  Yes Yes Yes No  Yes Yes Yes Yes No 
#> [379] Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Yes Yes Yes Yes Yes No  Yes Yes
#> [397] No  Yes Yes Yes
#> attr(,"var_type")
#> [1] categorical
#> attr(,"method")
#> [1] mice
#> attr(,"na_pos")
#>  [1]  33  36  84  94 113 132 151 292 313 339
#> attr(,"seed")
#> [1] 67257
#> attr(,"type")
#> [1] missing values
#> attr(,"message")
#> [1] complete imputation
#> attr(,"success")
#> [1] TRUE
#> Levels: No Yes

# summary of imputation
summary(urban)
#> * Impute missing values based on Multivariate Imputation by Chained Equations
#>  - method : mice
#>  - random seed : 67257
#> 
#> * Information of Imputation (before vs after)
#>      original imputation original_percent imputation_percent
#> No        115        121            28.75              30.25
#> Yes       275        279            68.75              69.75
#> <NA>       10          0             2.50               0.00

# viz of imputation
plot(urban)

Collaboration with dplyr

The following example imputes the missing value of the Income variable, and then calculates the arithmetic mean for each level of US. In this case, dplyr is used, and it is easily interpreted logically using pipes.

# The mean before and after the imputation of the Income variable
carseats %>%
  mutate(Income_imp = imputate_na(carseats, Income, US, method = "knn")) %>%
  group_by(US) %>%
  summarise(orig = mean(Income, na.rm = TRUE),
    imputation = mean(Income_imp))
#> # A tibble: 2 × 3
#>   US     orig imputation
#>   <fct> <dbl>      <dbl>
#> 1 No     65.8       66.1
#> 2 Yes    70.4       70.5

Imputation of outliers

imputes thr outliers with imputate_outlier()

imputate_outlier() imputes the outliers value. The predictor with outliers supports only numeric variables and supports the following methods.

  • predictor is numerical variable
    • “mean” : arithmetic mean
    • “median” : median
    • “mode” : mode
    • “capping” : Imputate the upper outliers with 95 percentile, and Imputate the bottom outliers with 5 percentile.

imputate_outlier() imputes the outliers with the numeric variable Price as the “capping” method, as follows. summary() summarizes outliers imputation information, and plot() visualizes imputation information.

price <- imputate_outlier(carseats, Price, method = "capping")

# result of imputation
price
#>   [1] 120.00  83.00  80.00  97.00 128.00  72.00 108.00 120.00 124.00 124.00
#>  [11] 100.00  94.00 136.00  86.00 118.00 144.00 110.00 131.00  68.00 121.00
#>  [21] 131.00 109.00 138.00 109.00 113.00  82.00 131.00 107.00  97.00 102.00
#>  [31]  89.00 131.00 137.00 128.00 128.00  96.00 100.00 110.00 102.00 138.00
#>  [41] 126.00 124.00  77.00 134.00  95.00 135.00  70.00 108.00  98.00 149.00
#>  [51] 108.00 108.00 129.00 119.00 144.00 154.00  84.00 117.00 103.00 114.00
#>  [61] 123.00 107.00 133.00 101.00 104.00 128.00  91.00 115.00 134.00  99.00
#>  [71]  99.00 150.00 116.00 104.00 136.00  92.00  70.00  89.00 145.00  90.00
#>  [81]  79.00 128.00 139.00  94.00 121.00 112.00 134.00 126.00 111.00 119.00
#>  [91] 103.00 107.00 125.00 104.00  84.00 148.00 132.00 129.00 127.00 107.00
#> [101] 106.00 118.00  97.00  96.00 138.00  97.00 139.00 108.00 103.00  90.00
#> [111] 116.00 151.00 125.00 127.00 106.00 129.00 128.00 119.00  99.00 128.00
#> [121] 131.00  87.00 108.00 155.00 120.00  77.00 133.00 116.00 126.00 147.00
#> [131]  77.00  94.00 136.00  97.00 131.00 120.00 120.00 118.00 109.00  94.00
#> [141] 129.00 131.00 104.00 159.00 123.00 117.00 131.00 119.00  97.00  87.00
#> [151] 114.00 103.00 128.00 150.00 110.00  69.00 157.00  90.00 112.00  70.00
#> [161] 111.00 160.00 149.00 106.00 141.00 155.05 137.00  93.00 117.00  77.00
#> [171] 118.00  55.00 110.00 128.00 155.05 122.00 154.00  94.00  81.00 116.00
#> [181] 149.00  91.00 140.00 102.00  97.00 107.00  86.00  96.00  90.00 104.00
#> [191] 101.00 173.00  93.00  96.00 128.00 112.00 133.00 138.00 128.00 126.00
#> [201] 146.00 134.00 130.00 157.00 124.00 132.00 160.00  97.00  64.00  90.00
#> [211] 123.00 120.00 105.00 139.00 107.00 144.00 144.00 111.00 120.00 116.00
#> [221] 124.00 107.00 145.00 125.00 141.00  82.00 122.00 101.00 163.00  72.00
#> [231] 114.00 122.00 105.00 120.00 129.00 132.00 108.00 135.00 133.00 118.00
#> [241] 121.00  94.00 135.00 110.00 100.00  88.00  90.00 151.00 101.00 117.00
#> [251] 156.00 132.00 117.00 122.00 129.00  81.00 144.00 112.00  81.00 100.00
#> [261] 101.00 118.00 132.00 115.00 159.00 129.00 112.00 112.00 105.00 166.00
#> [271]  89.00 110.00  63.00  86.00 119.00 132.00 130.00 125.00 151.00 158.00
#> [281] 145.00 105.00 154.00 117.00  96.00 131.00 113.00  72.00  97.00 156.00
#> [291] 103.00  89.00  74.00  89.00  99.00 137.00 123.00 104.00 130.00  96.00
#> [301]  99.00  87.00 110.00  99.00 134.00 132.00 133.00 120.00 126.00  80.00
#> [311] 166.00 132.00 135.00  54.00 129.00 171.00  72.00 136.00 130.00 129.00
#> [321] 152.00  98.00 139.00 103.00 150.00 104.00 122.00 104.00 111.00  89.00
#> [331] 112.00 134.00 104.00 147.00  83.00 110.00 143.00 102.00 101.00 126.00
#> [341]  91.00  93.00 118.00 121.00 126.00 149.00 125.00 112.00 107.00  96.00
#> [351]  91.00 105.00 122.00  92.00 145.00 146.00 164.00  72.00 118.00 130.00
#> [361] 114.00 104.00 110.00 108.00 131.00 162.00 134.00  77.00  79.00 122.00
#> [371] 119.00 126.00  98.00 116.00 118.00 124.00  92.00 125.00 119.00 107.00
#> [381]  89.00 151.00 121.00  68.00 112.00 132.00 160.00 115.00  78.00 107.00
#> [391] 111.00 124.00 130.00 120.00 139.00 128.00 120.00 159.00  95.00 120.00
#> attr(,"method")
#> [1] "capping"
#> attr(,"var_type")
#> [1] "numerical"
#> attr(,"outlier_pos")
#> [1]  43 126 166 175 368
#> attr(,"outliers")
#> [1]  24  49 191 185  53
#> attr(,"type")
#> [1] "outliers"
#> attr(,"message")
#> [1] "complete imputation"
#> attr(,"success")
#> [1] TRUE
#> attr(,"class")
#> [1] "imputation" "numeric"

# summary of imputation
summary(price)
#> Impute outliers with capping
#> 
#> * Information of Imputation (before vs after)
#>                     Original     Imputation  
#> described_variables "value"      "value"     
#> n                   "400"        "400"       
#> na                  "0"          "0"         
#> mean                "115.7950"   "115.8928"  
#> sd                  "23.67666"   "22.61092"  
#> se_mean             "1.183833"   "1.130546"  
#> IQR                 "31"         "31"        
#> skewness            "-0.1252862" "-0.0461621"
#> kurtosis            " 0.4518850" "-0.3030578"
#> p00                 "24"         "54"        
#> p01                 "54.99"      "67.96"     
#> p05                 "77"         "77"        
#> p10                 "87"         "87"        
#> p20                 "96.8"       "96.8"      
#> p25                 "100"        "100"       
#> p30                 "104"        "104"       
#> p40                 "110"        "110"       
#> p50                 "117"        "117"       
#> p60                 "122"        "122"       
#> p70                 "128.3"      "128.3"     
#> p75                 "131"        "131"       
#> p80                 "134"        "134"       
#> p90                 "146"        "146"       
#> p95                 "155.0500"   "155.0025"  
#> p99                 "166.05"     "164.02"    
#> p100                "191"        "173"

# viz of imputation
plot(price)

Collaboration with dplyr

The following example imputes the outliers of the Price variable, and then calculates the arithmetic mean for each level of US. In this case, dplyr is used, and it is easily interpreted logically using pipes.

# The mean before and after the imputation of the Price variable
carseats %>%
  mutate(Price_imp = imputate_outlier(carseats, Price, method = "capping")) %>%
  group_by(US) %>%
  summarise(orig = mean(Price, na.rm = TRUE),
    imputation = mean(Price_imp, na.rm = TRUE))
#> # A tibble: 2 × 3
#>   US     orig imputation
#>   <fct> <dbl>      <dbl>
#> 1 No     114.       114.
#> 2 Yes    117.       117.

Standardization and Resolving Skewness

Introduction to the use of transform()

transform() performs data transformation. Only numeric variables are supported, and the following methods are provided.

  • Standardization
    • “zscore” : z-score transformation. (x - mu) / sigma
    • “minmax” : minmax transformation. (x - min) / (max - min)
  • Resolving Skewness
    • “log” : log transformation. log(x)
    • “log+1” : log transformation. log(x + 1). Used for values that contain 0.
    • “sqrt” : square root transformation.
    • “1/x” : 1 / x transformation
    • “x^2” : x square transformation
    • “x^3” : x^3 square transformation
Standardization with transform()

Use the methods “zscore” and “minmax” to perform standardization.

carseats %>% 
  mutate(Income_minmax = transform(carseats$Income, method = "minmax"),
    Sales_minmax = transform(carseats$Sales, method = "minmax")) %>% 
  select(Income_minmax, Sales_minmax) %>% 
  boxplot()

Resolving Skewness data with transform()

find_skewness() searches for variables with skewed data. This function finds data skewed by search conditions and calculates skewness.

# find index of skewed variables
find_skewness(carseats)
#> [1] 4

# find names of skewed variables
find_skewness(carseats, index = FALSE)
#> [1] "Advertising"

# compute the skewness
find_skewness(carseats, value = TRUE)
#>       Sales   CompPrice      Income Advertising  Population       Price 
#>       0.185      -0.043       0.045       0.637      -0.051      -0.125 
#>         Age   Education 
#>      -0.077       0.044

# compute the skewness & filtering with threshold
find_skewness(carseats, value = TRUE, thres = 0.1)
#>       Sales Advertising       Price 
#>       0.185       0.637      -0.125

The skewness of Advertising is 0.637. This means that the distribution of data is somewhat inclined to the left. So, for normal distribution, use transform() to convert to “log” method as follows. summary() summarizes transformation information, and plot() visualizes transformation information.

Advertising_log = transform(carseats$Advertising, method = "log")

# result of transformation
head(Advertising_log)
#> [1] 2.397895 2.772589 2.302585 1.386294 1.098612 2.564949
# summary of transformation
summary(Advertising_log)
#> * Resolving Skewness with log
#> 
#> * Information of Transformation (before vs after)
#>             Original Transformation
#> n        400.0000000    400.0000000
#> na         0.0000000      0.0000000
#> mean       6.6350000           -Inf
#> sd         6.6503642            NaN
#> se_mean    0.3325182            NaN
#> IQR       12.0000000            Inf
#> skewness   0.6395858            NaN
#> kurtosis  -0.5451178            NaN
#> p00        0.0000000           -Inf
#> p01        0.0000000           -Inf
#> p05        0.0000000           -Inf
#> p10        0.0000000           -Inf
#> p20        0.0000000           -Inf
#> p25        0.0000000           -Inf
#> p30        0.0000000           -Inf
#> p40        2.0000000      0.6931472
#> p50        5.0000000      1.6094379
#> p60        8.4000000      2.1265548
#> p70       11.0000000      2.3978953
#> p75       12.0000000      2.4849066
#> p80       13.0000000      2.5649494
#> p90       16.0000000      2.7725887
#> p95       19.0000000      2.9444390
#> p99       23.0100000      3.1359198
#> p100      29.0000000      3.3672958
# viz of transformation
plot(Advertising_log)

It seems that the raw data contains 0, as there is a -Inf in the log converted value. So this time, convert it to “log+1”.

Advertising_log <- transform(carseats$Advertising, method = "log+1")

# result of transformation
head(Advertising_log)
#> [1] 2.484907 2.833213 2.397895 1.609438 1.386294 2.639057
# summary of transformation
summary(Advertising_log)
#> * Resolving Skewness with log+1
#> 
#> * Information of Transformation (before vs after)
#>             Original Transformation
#> n        400.0000000   400.00000000
#> na         0.0000000     0.00000000
#> mean       6.6350000     1.46247709
#> sd         6.6503642     1.19436323
#> se_mean    0.3325182     0.05971816
#> IQR       12.0000000     2.56494936
#> skewness   0.6395858    -0.19852549
#> kurtosis  -0.5451178    -1.66342876
#> p00        0.0000000     0.00000000
#> p01        0.0000000     0.00000000
#> p05        0.0000000     0.00000000
#> p10        0.0000000     0.00000000
#> p20        0.0000000     0.00000000
#> p25        0.0000000     0.00000000
#> p30        0.0000000     0.00000000
#> p40        2.0000000     1.09861229
#> p50        5.0000000     1.79175947
#> p60        8.4000000     2.23936878
#> p70       11.0000000     2.48490665
#> p75       12.0000000     2.56494936
#> p80       13.0000000     2.63905733
#> p90       16.0000000     2.83321334
#> p95       19.0000000     2.99573227
#> p99       23.0100000     3.17846205
#> p100      29.0000000     3.40119738
# viz of transformation
plot(Advertising_log)

Binning

Binning of individual variables using binning()

binning() transforms a numeric variable into a categorical variable by binning it. The following types of binning are supported.

  • “quantile” : categorize using quantile to include the same frequencies
  • “equal” : categorize to have equal length segments
  • “pretty” : categorized into moderately good segments
  • “kmeans” : categorization using K-means clustering
  • “bclust” : categorization using bagged clustering technique

Here are some examples of how to bin Income using binning().:

# Binning the carat variable. default type argument is "quantile"
bin <- binning(carseats$Income)
# Print bins class object
bin
#> binned type: quantile
#> number of bins: 10
#> x
#>         [21,30]         (30,39]         (39,48]         (48,62]         (62,69] 
#>              40              37              38              40              42 
#>         (69,78]   (78,86.56667] (86.56667,96.6] (96.6,108.6333]  (108.6333,120] 
#>              33              36              38              38              38 
#>            <NA> 
#>              20
# Summarize bins class object
summary(bin)
#>             levels freq   rate
#> 1          [21,30]   40 0.1000
#> 2          (30,39]   37 0.0925
#> 3          (39,48]   38 0.0950
#> 4          (48,62]   40 0.1000
#> 5          (62,69]   42 0.1050
#> 6          (69,78]   33 0.0825
#> 7    (78,86.56667]   36 0.0900
#> 8  (86.56667,96.6]   38 0.0950
#> 9  (96.6,108.6333]   38 0.0950
#> 10  (108.6333,120]   38 0.0950
#> 11            <NA>   20 0.0500
# Plot bins class object
plot(bin)

# Using labels argument
bin <- binning(carseats$Income, nbins = 4,
              labels = c("LQ1", "UQ1", "LQ3", "UQ3"))
bin
#> binned type: quantile
#> number of bins: 4
#> x
#>  LQ1  UQ1  LQ3  UQ3 <NA> 
#>   95  102   89   94   20
# Using another type argument
binning(carseats$Income, nbins = 5, type = "equal")
#> binned type: equal
#> number of bins: 5
#> x
#>    [21,40.8]  (40.8,60.6]  (60.6,80.4] (80.4,100.2]  (100.2,120]         <NA> 
#>           81           65           94           80           60           20
binning(carseats$Income, nbins = 5, type = "pretty")
#> binned type: pretty
#> number of bins: 5
#> x
#>   [20,40]   (40,60]   (60,80]  (80,100] (100,120]      <NA> 
#>        81        65        94        80        60        20
binning(carseats$Income, nbins = 5, type = "kmeans")
#> binned type: kmeans
#> number of bins: 5
#> x
#>   [21,36.5] (36.5,55.5] (55.5,75.5] (75.5,97.5]  (97.5,120]        <NA> 
#>          66          62          91          86          75          20
binning(carseats$Income, nbins = 5, type = "bclust")
#> binned type: bclust
#> number of bins: 5
#> x
#>   [21,37.5] (37.5,55.5] (55.5,75.5] (75.5,94.5]  (94.5,120]        <NA> 
#>          70          58          91          81          80          20

# Extract the binned results
extract(bin)
#>   [1] LQ3  UQ1  LQ1  UQ3  UQ1  UQ3  UQ3  LQ3  UQ3  UQ3  LQ3  UQ3  LQ1  LQ1  UQ3 
#>  [16] UQ3  <NA> <NA> UQ3  LQ3  LQ3  LQ1  UQ1  LQ1  UQ3  LQ1  UQ3  UQ3  LQ3  UQ3 
#>  [31] UQ3  UQ1  LQ1  LQ1  UQ1  LQ3  LQ3  LQ1  LQ3  <NA> UQ3  UQ1  UQ1  LQ1  LQ3 
#>  [46] UQ1  LQ3  UQ3  UQ1  UQ3  LQ1  LQ3  LQ1  UQ1  UQ3  LQ3  LQ3  LQ3  UQ3  LQ3 
#>  [61] UQ3  LQ1  UQ1  LQ3  UQ1  LQ1  UQ3  UQ1  UQ1  UQ1  LQ3  UQ1  UQ1  LQ3  UQ1 
#>  [76] UQ3  LQ3  LQ3  UQ1  UQ1  UQ3  LQ3  LQ3  LQ1  LQ1  UQ3  LQ3  UQ1  LQ1  UQ1 
#>  [91] LQ1  UQ1  UQ3  LQ1  <NA> LQ1  LQ1  LQ3  LQ3  UQ1  UQ1  UQ3  LQ1  LQ3  UQ3 
#> [106] UQ3  LQ1  UQ3  LQ3  UQ1  UQ1  UQ3  UQ3  LQ1  LQ3  <NA> LQ3  UQ1  LQ3  UQ3 
#> [121] UQ3  LQ3  UQ3  UQ3  UQ3  <NA> UQ1  UQ1  UQ3  UQ3  LQ3  UQ1  LQ3  UQ3  LQ1 
#> [136] UQ3  LQ3  LQ1  UQ3  UQ1  UQ1  LQ1  LQ3  LQ3  UQ1  UQ1  LQ3  UQ1  UQ3  UQ3 
#> [151] LQ3  UQ1  LQ3  LQ1  UQ1  LQ3  LQ1  UQ1  LQ3  UQ1  LQ1  LQ1  <NA> UQ1  UQ1 
#> [166] UQ1  UQ1  LQ3  LQ3  LQ1  LQ1  UQ3  UQ3  LQ3  LQ1  LQ3  <NA> LQ3  <NA> LQ1 
#> [181] UQ3  LQ3  UQ1  LQ3  LQ1  UQ3  UQ1  LQ1  LQ1  UQ3  LQ1  LQ1  LQ1  LQ3  UQ3 
#> [196] UQ3  LQ1  UQ1  LQ3  LQ3  UQ3  LQ3  LQ3  LQ3  LQ3  LQ1  UQ1  UQ3  <NA> LQ1 
#> [211] LQ1  UQ3  UQ1  LQ3  UQ3  LQ3  <NA> UQ1  UQ1  LQ3  UQ3  <NA> UQ3  UQ1  LQ3 
#> [226] LQ1  LQ1  UQ1  LQ3  UQ3  UQ1  UQ1  LQ3  LQ3  UQ1  LQ1  LQ1  LQ1  LQ1  UQ3 
#> [241] LQ3  UQ1  UQ1  LQ1  LQ1  UQ1  UQ1  UQ3  UQ1  UQ1  UQ3  UQ3  UQ3  LQ1  UQ3 
#> [256] LQ3  LQ1  UQ1  LQ1  LQ1  UQ3  LQ1  <NA> LQ1  LQ1  LQ1  UQ3  LQ3  UQ1  UQ1 
#> [271] LQ1  UQ1  LQ1  UQ3  UQ3  UQ3  UQ1  UQ1  UQ3  UQ1  LQ3  UQ1  UQ3  UQ3  UQ1 
#> [286] LQ1  UQ3  UQ1  LQ1  LQ3  UQ3  LQ3  UQ1  LQ3  LQ3  LQ1  UQ1  LQ3  UQ1  LQ1 
#> [301] LQ3  UQ3  LQ3  UQ1  UQ3  LQ1  LQ1  UQ3  LQ3  UQ3  UQ1  UQ1  UQ3  LQ3  <NA>
#> [316] LQ1  LQ1  LQ1  LQ3  UQ1  LQ3  LQ1  UQ1  UQ3  UQ1  UQ1  LQ1  LQ1  UQ1  UQ1 
#> [331] UQ1  UQ1  LQ1  UQ1  UQ3  LQ3  LQ1  LQ1  LQ1  UQ1  LQ1  UQ3  UQ3  LQ1  LQ3 
#> [346] UQ1  <NA> LQ1  UQ3  LQ1  <NA> UQ3  UQ3  UQ1  LQ1  UQ3  UQ3  LQ3  UQ3  UQ1 
#> [361] LQ3  LQ1  UQ1  <NA> LQ1  LQ1  UQ1  UQ3  LQ1  UQ3  LQ1  LQ3  <NA> <NA> UQ1 
#> [376] UQ1  UQ1  UQ1  LQ3  UQ3  UQ1  UQ1  LQ1  UQ3  LQ1  LQ3  UQ3  LQ3  LQ3  LQ1 
#> [391] LQ3  UQ1  LQ1  UQ1  UQ1  UQ3  <NA> LQ1  LQ3  LQ1 
#> Levels: LQ1 < UQ1 < LQ3 < UQ3

# -------------------------
# Using pipes & dplyr
# -------------------------
library(dplyr)

carseats %>%
 mutate(Income_bin = binning(carseats$Income) %>% 
                     extract()) %>%
 group_by(ShelveLoc, Income_bin) %>%
 summarise(freq = n()) %>%
 arrange(desc(freq)) %>%
 head(10)
#> `summarise()` has grouped output by 'ShelveLoc'. You can override using the
#> `.groups` argument.
#> # A tibble: 10 × 3
#> # Groups:   ShelveLoc [1]
#>    ShelveLoc Income_bin       freq
#>    <fct>     <ord>           <int>
#>  1 Medium    [21,30]            25
#>  2 Medium    (62,69]            24
#>  3 Medium    (48,62]            23
#>  4 Medium    (39,48]            21
#>  5 Medium    (30,39]            20
#>  6 Medium    (86.56667,96.6]    20
#>  7 Medium    (108.6333,120]     20
#>  8 Medium    (69,78]            18
#>  9 Medium    (96.6,108.6333]    18
#> 10 Medium    (78,86.56667]      17
Optimal Binning with binning_by()

binning_by() transforms a numeric variable into a categorical variable by optimal binning. This method is often used when developing a scorecard model.

The following binning_by() example optimally binning Advertising considering the target variable US with a binary class.

# optimal binning using character
bin <- binning_by(carseats, "US", "Advertising")
#> Warning in binning_by(carseats, "US", "Advertising"): The factor y has been changed to a numeric vector consisting of 0 and 1.
#> 'Yes' changed to 1 (positive) and 'No' changed to 0 (negative).

# optimal binning using name
bin <- binning_by(carseats, US, Advertising)
#> Warning in binning_by(carseats, US, Advertising): The factor y has been changed to a numeric vector consisting of 0 and 1.
#> 'Yes' changed to 1 (positive) and 'No' changed to 0 (negative).
bin
#> binned type: optimal
#> number of bins: 3
#> x
#> [-1,0]  (0,6] (6,29] 
#>    144     69    187

# summary optimal_bins class
summary(bin)
#> ── Binning Table ──────────────────────── Several Metrics ── 
#>      Bin CntRec CntPos CntNeg RatePos RateNeg    Odds      WoE      IV     JSD
#> 1 [-1,0]    144     19    125 0.07364 0.88028  0.1520 -2.48101 2.00128 0.20093
#> 2  (0,6]     69     54     15 0.20930 0.10563  3.6000  0.68380 0.07089 0.00869
#> 3 (6,29]    187    185      2 0.71705 0.01408 92.5000  3.93008 2.76272 0.21861
#> 4  Total    400    258    142 1.00000 1.00000  1.8169       NA 4.83489 0.42823
#>       AUC
#> 1 0.03241
#> 2 0.01883
#> 3 0.00903
#> 4 0.06028
#> 
#> ── General Metrics ───────────────────────────────────────── 
#> • Gini index                       :  -0.87944
#> • IV (Jeffrey)                     :  4.83489
#> • JS (Jensen-Shannon) Divergence   :  0.42823
#> • Kolmogorov-Smirnov Statistics    :  0.80664
#> • HHI (Herfindahl-Hirschman Index) :  0.37791
#> • HHI (normalized)                 :  0.06687
#> • Cramer's V                       :  0.81863 
#> 
#> ── Significance Tests ──────────────────── Chisquare Test ── 
#>    Bin A  Bin B statistics      p_value
#> 1 [-1,0]  (0,6]   87.67064 7.731349e-21
#> 2  (0,6] (6,29]   34.73349 3.780706e-09

# performance table
attr(bin, "performance")
#>      Bin CntRec CntPos CntNeg CntCumPos CntCumNeg RatePos RateNeg RateCumPos
#> 1 [-1,0]    144     19    125        19       125 0.07364 0.88028    0.07364
#> 2  (0,6]     69     54     15        73       140 0.20930 0.10563    0.28295
#> 3 (6,29]    187    185      2       258       142 0.71705 0.01408    1.00000
#> 4  Total    400    258    142        NA        NA 1.00000 1.00000         NA
#>   RateCumNeg    Odds   LnOdds      WoE      IV     JSD     AUC
#> 1    0.88028  0.1520 -1.88387 -2.48101 2.00128 0.20093 0.03241
#> 2    0.98592  3.6000  1.28093  0.68380 0.07089 0.00869 0.01883
#> 3    1.00000 92.5000  4.52721  3.93008 2.76272 0.21861 0.00903
#> 4         NA  1.8169  0.59713       NA 4.83489 0.42823 0.06028

# visualize optimal_bins class
plot(bin)

# extract binned results
extract(bin)
#>   [1] (6,29] (6,29] (6,29] (0,6]  (0,6]  (6,29] [-1,0] (6,29] [-1,0] [-1,0]
#>  [11] (6,29] (0,6]  (0,6]  (6,29] (6,29] (0,6]  [-1,0] (6,29] [-1,0] (6,29]
#>  [21] (0,6]  (6,29] (0,6]  [-1,0] (6,29] [-1,0] (6,29] [-1,0] [-1,0] (6,29]
#>  [31] [-1,0] (6,29] (6,29] (6,29] [-1,0] (6,29] [-1,0] (0,6]  [-1,0] [-1,0]
#>  [41] [-1,0] [-1,0] [-1,0] (6,29] (0,6]  [-1,0] (6,29] [-1,0] [-1,0] [-1,0]
#>  [51] (6,29] [-1,0] (0,6]  (6,29] (6,29] (0,6]  [-1,0] [-1,0] (6,29] (0,6] 
#>  [61] (6,29] [-1,0] [-1,0] (6,29] (6,29] [-1,0] [-1,0] (6,29] (6,29] [-1,0]
#>  [71] (6,29] (6,29] [-1,0] (6,29] (0,6]  (6,29] (6,29] (6,29] (0,6]  [-1,0]
#>  [81] (6,29] [-1,0] (0,6]  (6,29] [-1,0] [-1,0] (6,29] (6,29] (6,29] (0,6] 
#>  [91] [-1,0] (6,29] [-1,0] [-1,0] (0,6]  (6,29] (6,29] (0,6]  (6,29] (0,6] 
#> [101] (6,29] [-1,0] [-1,0] [-1,0] [-1,0] (6,29] [-1,0] [-1,0] (0,6]  [-1,0]
#> [111] (6,29] (6,29] (0,6]  (6,29] (6,29] [-1,0] [-1,0] [-1,0] (0,6]  (6,29]
#> [121] (6,29] (6,29] (0,6]  [-1,0] [-1,0] [-1,0] (0,6]  (0,6]  (0,6]  (6,29]
#> [131] (6,29] (0,6]  (6,29] (0,6]  [-1,0] (6,29] [-1,0] [-1,0] (6,29] (6,29]
#> [141] (6,29] [-1,0] [-1,0] (6,29] [-1,0] (6,29] [-1,0] (6,29] [-1,0] (6,29]
#> [151] (6,29] (6,29] [-1,0] (6,29] (6,29] [-1,0] [-1,0] (6,29] (0,6]  [-1,0]
#> [161] [-1,0] (0,6]  [-1,0] [-1,0] [-1,0] (6,29] (6,29] [-1,0] [-1,0] (6,29]
#> [171] (6,29] (6,29] (6,29] (0,6]  [-1,0] [-1,0] (6,29] [-1,0] (6,29] (0,6] 
#> [181] (6,29] [-1,0] (0,6]  (0,6]  (6,29] (6,29] [-1,0] [-1,0] [-1,0] (6,29]
#> [191] (6,29] (6,29] [-1,0] (6,29] (6,29] (0,6]  (0,6]  [-1,0] (0,6]  (0,6] 
#> [201] [-1,0] [-1,0] (0,6]  [-1,0] [-1,0] (0,6]  [-1,0] [-1,0] [-1,0] (6,29]
#> [211] (0,6]  (6,29] (6,29] (0,6]  (0,6]  (6,29] [-1,0] [-1,0] (6,29] (6,29]
#> [221] (6,29] [-1,0] (0,6]  (6,29] [-1,0] [-1,0] [-1,0] (6,29] (6,29] [-1,0]
#> [231] [-1,0] [-1,0] (6,29] (6,29] (6,29] (6,29] (6,29] (6,29] [-1,0] [-1,0]
#> [241] [-1,0] [-1,0] [-1,0] (6,29] [-1,0] [-1,0] (6,29] [-1,0] [-1,0] [-1,0]
#> [251] (6,29] (0,6]  [-1,0] (0,6]  (6,29] (6,29] [-1,0] (6,29] [-1,0] (6,29]
#> [261] (6,29] (0,6]  (6,29] (0,6]  (0,6]  (6,29] (6,29] (6,29] [-1,0] [-1,0]
#> [271] [-1,0] [-1,0] [-1,0] (6,29] (0,6]  (6,29] (6,29] (6,29] (0,6]  (6,29]
#> [281] (6,29] (6,29] [-1,0] [-1,0] (6,29] (6,29] (6,29] (0,6]  [-1,0] (6,29]
#> [291] (6,29] [-1,0] (6,29] [-1,0] (0,6]  (6,29] (6,29] (6,29] [-1,0] (6,29]
#> [301] (0,6]  [-1,0] (6,29] (6,29] (6,29] (6,29] (0,6]  [-1,0] (6,29] (6,29]
#> [311] (6,29] (6,29] (0,6]  (0,6]  (6,29] (6,29] (0,6]  [-1,0] (6,29] (6,29]
#> [321] (6,29] (0,6]  (6,29] (6,29] (0,6]  (6,29] [-1,0] (6,29] (0,6]  (6,29]
#> [331] [-1,0] (6,29] (6,29] (6,29] (6,29] (6,29] (0,6]  [-1,0] [-1,0] (0,6] 
#> [341] [-1,0] [-1,0] (6,29] (6,29] [-1,0] [-1,0] [-1,0] [-1,0] (6,29] (6,29]
#> [351] (6,29] (6,29] (6,29] (6,29] (0,6]  [-1,0] [-1,0] (0,6]  (6,29] (6,29]
#> [361] (6,29] (6,29] [-1,0] (0,6]  (6,29] [-1,0] (6,29] [-1,0] (6,29] (6,29]
#> [371] (6,29] [-1,0] [-1,0] [-1,0] (6,29] (0,6]  (6,29] [-1,0] (0,6]  [-1,0]
#> [381] (6,29] (6,29] (6,29] [-1,0] (6,29] (6,29] [-1,0] (6,29] (6,29] (6,29]
#> [391] (6,29] [-1,0] (6,29] (6,29] (6,29] (6,29] (0,6]  (6,29] (6,29] [-1,0]
#> Levels: [-1,0] < (0,6] < (6,29]

Reporting

Diagnostic Report

dlookr provides two automated data diagnostic reports:

  • Web page-based dynamic reports can perform in-depth analysis through visualization and statistical tables.
  • Static reports generated as pdf files or html files can be archived as output of data analysis.

Create a diagnostic report using diagnose_web_report()

diagnose_web_report() create dynamic report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of dynamic web report

The contents of the report are as follows.:

  • Overview
    • Data Structures
      • Data Structures
      • Data Types
      • Job Informations
    • Warnings
    • Variables
  • Missing Values
    • List of Missing Values
    • Visualization
  • Unique Values
    • Categorical Variables
    • Numerical Variables
  • Outliers
  • Samples
    • Duplicated
    • Heads
    • Tails
Some arguments for dynamic web report

diagnose_web_report() generates various reports with the following arguments.

  • output_file
    • name of generated file.
  • output_dir
    • name of directory to generate report file.
  • title
    • title of report.
  • subtitle
    • subtitle of report.
  • author
    • author of report.
  • title_color
    • color of title.
  • thres_uniq_cat
    • threshold to use for “Unique Values - Categorical Variables”.
  • thres_uniq_num
    • threshold to use for “Unique Values - Numerical Variables”.
  • logo_img
    • name of logo image file on top left.
  • create_date
    • The date on which the report is generated.
  • theme
    • name of theme for report. support “orange” and “blue”.
  • sample_percent
    • Sample percent of data for performing Diagnosis.

The following script creates a quality diagnosis report for the tbl_df class object, flights.

flights %>%
  diagnose_web_report(subtitle = "flights", output_dir = "./", 
                      output_file = "Diagn.html", theme = "blue")
Screenshot of dynamic report
  • The part of the report is shown in the following figure.:

The part of the report

  • The dynamic contents of the report is shown in the following figure.:

The dynamic contents of the report

Create a diagnostic report using diagnose_paged_report()

diagnose_paged_report() create static report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of static paged report

The contents of the report are as follows.:

  • Overview
    • Data Structures
    • Job Informations
    • Warnings
    • Variables
  • Missing Values
    • List of Missing Values
    • Visualization
  • Unique Values
    • Categorical Variables
    • Numerical Variables
  • Categorical Variable Diagnosis
    • Top Ranks
  • Numerical Variable Diagnosis
    • Distribution
      • Zero Values
      • Minus Values
    • Outliers
      • List of Outliers
      • Individual Outliers
Some arguments for static paged report

diagnose_paged_report() generates various reports with the following arguments.

  • output_format
    • report output type. Choose either “pdf” and “html”.
  • output_file
    • name of generated file.
  • output_dir
    • name of directory to generate report file.
  • title
    • title of report.
  • subtitle
    • subtitle of report.
  • abstract_title
    • abstract of report
  • author
    • author of report.
  • title_color
    • color of title.
  • subtitle_color
    • color of subtitle.
  • thres_uniq_cat
    • threshold to use for “Unique Values - Categorical Variables”.
  • thres_uniq_num
    • threshold to use for “Unique Values - Numerical Variables”.
  • flag_content_zero
    • whether to output “Zero Values” information.
  • flag_content_minus
    • whether to output “Minus Values” information.
  • flag_content_missing
    • whether to output “Missing Value” information.
  • logo_img
    • name of logo image file on top left.
  • cover_img
    • name of cover image file on center.
  • create_date
    • The date on which the report is generated.
  • theme
    • name of theme for report. support “orange” and “blue”.
  • sample_percent
    • Sample percent of data for performing Diagnosis.

The following script creates a quality diagnosis report for the tbl_df class object, flights.

flights %>%
  diagnose_paged_report(subtitle = "flights", output_dir = "./",
                        output_file = "Diagn.pdf", theme = "blue")
Screenshot of static report
  • The cover of the report is shown in the following figure.:

The part of the report

  • The contents of the report is shown in the following figure.:

The dynamic contents of the report

EDA Report

dlookr provides two automated EDA reports:

  • Web page-based dynamic reports can perform in-depth analysis through visualization and statistical tables.
  • Static reports generated as pdf files or html files can be archived as output of data analysis.

Create a dynamic report using eda_web_report()

eda_web_report() create dynamic report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of dynamic web report

The contents of the report are as follows.:

  • Overview
    • Data Structures
    • Data Types
    • Job Informations
  • Univariate Analysis
    • Descriptive Statistics
    • Normality Test
  • Bivariate Analysis
    • Compare Numerical Variables
    • Compare Categorical Variables
  • Multivariate Analysis
    • Correlation Analysis
      • Correlation Matrix
      • Correlation Plot
  • Target based Analysis
    • Grouped Numerical Variables
    • Grouped Categorical Variables
    • Grouped Correlation
Some arguments for dynamic web report

eda_web_report() generates various reports with the following arguments.

  • target
    • target variable
  • output_file
    • name of generated file.
  • output_dir
    • name of directory to generate report file.
  • title
    • title of report.
  • subtitle
    • subtitle of report.
  • author
    • author of report.
  • title_color
    • color of title.
  • logo_img
    • name of logo image file on top left.
  • create_date
    • The date on which the report is generated.
  • theme
    • name of theme for report. support “orange” and “blue”.
  • sample_percent
    • Sample percent of data for performing EDA.

The following script creates a EDA report for the data.frame class object, heartfailure.

heartfailure %>%
  eda_web_report(target = "death_event", subtitle = "heartfailure", 
                 output_dir = "./", output_file = "EDA.html", theme = "blue")
Screenshot of dynamic report
  • The dynamic contents of the report is shown in the following figure.:

The part of the report

Create a EDA report using eda_paged_report()

eda_paged_report() create static report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of static paged report

The contents of the report are as follows.:

  • Overview
    • Data Structures
    • Job Informations
  • Univariate Analysis
    • Descriptive Statistics
      • Numerical Variables
      • Categorical Variables
    • Normality Test
  • Bivariate Analysis
    • Compare Numerical Variables
    • Compare Categorical Variables
  • Multivariate Analysis
    • Correlation Analysis
      • Correlation Coefficient Matrix
      • Correlation Plot
  • Target based Analysis
    • Grouped Numerical Variables
    • Grouped Categorical Variables
    • Grouped Correlation
Some arguments for static paged report

eda_paged_report() generates various reports with the following arguments.

  • target
    • target variable
  • output_format
    • report output type. Choose either “pdf” and “html”.
  • output_file
    • name of generated file.
  • output_dir
    • name of directory to generate report file.
  • title
    • title of report.
  • subtitle
    • subtitle of report.
  • abstract_title
    • abstract of report
  • author
    • author of report.
  • title_color
    • color of title.
  • subtitle_color
    • color of subtitle.
  • logo_img
    • name of logo image file on top left.
  • cover_img
    • name of cover image file on center.
  • create_date
    • The date on which the report is generated.
  • theme
    • name of theme for report. support “orange” and “blue”.
  • sample_percent
    • Sample percent of data for performing EDA.

The following script creates a EDA report for the data.frame class object, heartfailure.

heartfailure %>%
  eda_paged_report(target = "death_event", subtitle = "heartfailure", 
                   output_dir = "./", output_file = "EDA.pdf", theme = "blue")
Screenshot of static report
  • The cover of the report is shown in the following figure.:

The part of the report

  • The contents of the report is shown in the following figure.:

The dynamic contents of the report

Data Transformation Report

dlookr provides two automated data transformation reports:

  • Web page-based dynamic reports can perform in-depth analysis through visualization and statistical tables.
  • Static reports generated as pdf files or html files can be archived as output of data analysis.

Create a dynamic report using transformation_web_report()

transformation_web_report() create dynamic report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of dynamic web report

The contents of the report are as follows.:

  • Overview
    • Data Structures
    • Data Types
    • Job Informations
  • Imputation
    • Missing Values
    • Outliers
  • Resolving Skewness
  • Binning
  • Optimal Binning
Some arguments for dynamic web report

transformation_web_report() generates various reports with the following arguments.

  • target
    • target variable
  • output_file
    • name of generated file.
  • output_dir
    • name of directory to generate report file.
  • title
    • title of report.
  • subtitle
    • subtitle of report.
  • author
    • author of report.
  • title_color
    • color of title.
  • logo_img
    • name of logo image file on top left.
  • create_date
    • The date on which the report is generated.
  • theme
    • name of theme for report. support “orange” and “blue”.
  • sample_percent
    • Sample percent of data for performing data transformation.

The following script creates a data transformation report for the tbl_df class object, heartfailure.

heartfailure %>%
  transformation_web_report(target = "death_event", subtitle = "heartfailure",
                            output_dir = "./", output_file = "transformation.html", 
                            theme = "blue")
Screenshot of dynamic report
  • The dynamic contents of the report is shown in the following figure.:

The part of the report

Create a static report using transformation_paged_report()

transformation_paged_report() create static report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of static paged report

The contents of the report are as follows.:

  • Overview
    • Data Structures
    • Job Informations
  • Imputation
    • Missing Values
    • Outliers
  • Resolving Skewness
  • Binning
  • Optimal Binning
Some arguments for static paged report

transformation_paged_report() generates various reports with the following arguments.

  • target
    • target variable
  • output_format
    • report output type. Choose either “pdf” and “html”.
  • output_file
    • name of generated file.
  • output_dir
    • name of directory to generate report file.
  • title
    • title of report.
  • subtitle
    • subtitle of report.
  • abstract_title
    • abstract of report
  • author
    • author of report.
  • title_color
    • color of title.
  • subtitle_color
    • color of subtitle.
  • logo_img
    • name of logo image file on top left.
  • cover_img
    • name of cover image file on center.
  • create_date
    • The date on which the report is generated.
  • theme
    • name of theme for report. support “orange” and “blue”.
  • sample_percent
    • Sample percent of data for performing data tansformation.

The following script creates a data transformation report for the data.frame class object, heartfailure.

heartfailure %>%
  transformation_paged_report(target = "death_event", subtitle = "heartfailure",
                              output_dir = "./", output_file = "transformation.pdf", 
                              theme = "blue")
Screenshot of static report
  • The cover of the report is shown in the following figure.:

The part of the report

  • The contents of the report is shown in the following figure.:

The dynamic contents of the report

Supports table of DBMS

Functions that supports tables of DBMS

The DBMS table diagnostic/EDA function supports In-database mode that performs SQL operations on the DBMS side. If the size of the data is large, using In-database mode is faster.

It is difficult to obtain anomaly or to implement the sampling-based algorithm in SQL of DBMS. So some functions do not yet support In-database mode. In this case, it is performed in In-memory mode in which table data is brought to R side and calculated. In this case, if the data size is large, the execution speed may be slow. It supports the collect_size argument, which allows you to import the specified number of samples of data into R.

  • In-database support functions
    • diagonse()
    • diagnose_category()
  • In-database not support functions
    • diagnose_numeric()
    • diagnose_outlier()
    • plot_outlier()
    • diagnose_web_report()
    • diagnose_paged_report()
    • normality()
    • plot_normality()
    • correlate()
    • plot.correlate()
    • describe()
    • eda_web_report()
    • eda_paged_report()

How to use functions

  • Function calls using the In-database mode
    • in_database = TRUE
  • Function calls using the In-memory mode
    • in_database = FALSE
  • Diagnosis and EDA using sample data from DBMS
    • collect_size =
    • only In-memory mode

Preparing table data

Copy the carseats data frame to the SQLite DBMS and create it as a table named TB_CARSEATS. Mysql/MariaDB, PostgreSQL, Oracle DBMS, etc. are also available for your environment.

if (!require(DBI)) install.packages('DBI')
if (!require(RSQLite)) install.packages('RSQLite')
if (!require(dplyr)) install.packages('dplyr')
if (!require(dbplyr)) install.packages('dbplyr')

library(dbplyr)
library(dplyr)

carseats <- ISLR::Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

# copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

Diagonose table of the DBMS

Diagnose data quality of variables in the DBMS

Use dplyr::tbl() to create a tbl_dbi object, then use it as a data frame object. That is, the data argument of all diagnose function is specified as tbl_dbi object instead of data frame object.

# Diagnosis of all columns
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose()
#> # A tibble: 11 × 6
#>    variables   types     missing_count missing_percent unique_count unique_rate
#>    <chr>       <chr>             <dbl>           <dbl>        <int>       <dbl>
#>  1 Sales       double                0            0             336      0.84  
#>  2 CompPrice   double                0            0              73      0.182 
#>  3 Income      double               20            5              98      0.245 
#>  4 Advertising double                0            0              28      0.07  
#>  5 Population  double                0            0             275      0.688 
#>  6 Price       double                0            0             101      0.252 
#>  7 ShelveLoc   character             0            0               3      0.0075
#>  8 Age         double                0            0              56      0.14  
#>  9 Education   double                0            0               9      0.0225
#> 10 Urban       character             5            1.25            3      0.0075
#> 11 US          character             0            0               2      0.005

# Positions values select columns, and In-memory mode
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose(1, 3, 8, in_database = FALSE)
#> # A tibble: 3 × 6
#>   variables types   missing_count missing_percent unique_count unique_rate
#>   <chr>     <chr>           <int>           <dbl>        <int>       <dbl>
#> 1 Sales     numeric             0               0          336       0.84 
#> 2 Income    numeric            20               5           98       0.245
#> 3 Age       numeric             0               0           56       0.14

Diagnose data quality of categorical variables in the DBMS

# Positions values select variables, and In-memory mode and collect size is 200
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose_category(7, in_database = FALSE, collect_size = 200) 
#> # A tibble: 3 × 6
#>   variables levels     N  freq ratio  rank
#>   <chr>     <chr>  <int> <int> <dbl> <int>
#> 1 ShelveLoc Medium   200   113  56.5     1
#> 2 ShelveLoc Bad      200    47  23.5     2
#> 3 ShelveLoc Good     200    40  20       3

Diagnose data quality of numerical variables in the DBMS

# Diagnosis of all numerical variables
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose_numeric()
#> # A tibble: 8 × 10
#>   variables     min     Q1   mean median     Q3   max  zero minus outlier
#>   <chr>       <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <int> <int>   <int>
#> 1 Sales           0   5.39   7.50   7.49   9.32  16.3     1     0       2
#> 2 CompPrice      77 115    125.   125    135    175       0     0       2
#> 3 Income         21  42     68.7   69     92    120       0     0       0
#> 4 Advertising     0   0      6.64   5     12     29     144     0       0
#> 5 Population     10 139    265.   272    398.   509       0     0       0
#> 6 Price          24 100    116.   117    131    191       0     0       5
#> 7 Age            25  39.8   53.3   54.5   66     80       0     0       0
#> 8 Education      10  12     13.9   14     16     18       0     0       0

Diagnose outlier of numerical variables in the DBMS

con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose_outlier()  %>%
  filter(outliers_ratio > 1)
#> # A tibble: 1 × 6
#>   variables outliers_cnt outliers_ratio outliers_mean with_mean without_mean
#>   <chr>            <int>          <dbl>         <dbl>     <dbl>        <dbl>
#> 1 Price                5           1.25          100.      116.         116.

Plot outlier information of numerical data diagnosis in the DBMS

# Visualization of numerical variables with a ratio of
# outliers greater than 1%
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  plot_outlier(con_sqlite %>% 
                 tbl("TB_CARSEATS") %>% 
                 diagnose_outlier() %>%
                 filter(outliers_ratio > 1) %>%
                 select(variables) %>%
                 pull())

Reporting the information of data diagnosis for table of thr DBMS

The following shows several examples of creating an data diagnosis report for a DBMS table.

Using the collect_size argument, you can perform data diagnosis with the corresponding number of sample data. If the number of data is very large, use collect_size.

# create html file. 
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose_web_report()

# create pdf file. file name is Diagn.pdf
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose_paged_report(output_format = "pdf", output_file = "Diagn.pdf")

EDA table of the DBMS

Calculating descriptive statistics of numerical column of table in the DBMS

Use dplyr::tbl() to create a tbl_dbi object, then use it as a data frame object. That is, the data argument of all EDA function is specified as tbl_dbi object instead of data frame object.

# extract only those with 'Urban' variable level is "Yes",
# and find 'Sales' statistics by 'ShelveLoc' and 'US'
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(Urban == "Yes") %>%
  group_by(ShelveLoc, US) %>%
  describe(Sales)
#> # A tibble: 6 × 28
#>   described_variables ShelveLoc US        n    na  mean    sd se_mean   IQR
#>   <chr>               <chr>     <chr> <int> <int> <dbl> <dbl>   <dbl> <dbl>
#> 1 Sales               Bad       No       23     0  5.36  1.91   0.398  2.32
#> 2 Sales               Bad       Yes      51     0  5.59  2.57   0.359  3.76
#> 3 Sales               Good      No       18     0  9.21  2.97   0.700  3.71
#> 4 Sales               Good      Yes      38     0 10.8   2.22   0.360  2.97
#> 5 Sales               Medium    No       54     0  6.92  2.08   0.283  3.18
#> 6 Sales               Medium    Yes      96     0  7.55  2.19   0.224  3.39
#> # … with 19 more variables: skewness <dbl>, kurtosis <dbl>, p00 <dbl>,
#> #   p01 <dbl>, p05 <dbl>, p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>,
#> #   p40 <dbl>, p50 <dbl>, p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>,
#> #   p90 <dbl>, p95 <dbl>, p99 <dbl>, p100 <dbl>

Test of normality on numeric columns using in the DBMS

# Test log(Income) variables by 'ShelveLoc' and 'US',
# and extract only p.value greater than 0.01.

# SQLite extension functions for log transformation
RSQLite::initExtension(con_sqlite)

con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
 mutate(log_income = log(Income)) %>%
 group_by(ShelveLoc, US) %>%
 normality(log_income) %>%
 filter(p_value > 0.01)
#> # A tibble: 1 × 6
#>   variable   ShelveLoc US    statistic p_value sample
#>   <chr>      <chr>     <chr>     <dbl>   <dbl>  <dbl>
#> 1 log_income Bad       No        0.945  0.0938     34

Normalization visualization of numerical column in the DBMS

# extract only those with 'ShelveLoc' variable level is "Good",
# and plot 'Income' by 'US'
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(ShelveLoc == "Good") %>%
  group_by(US) %>%
  plot_normality(Income)

Compute the correlation coefficient between two columns of table in DBMS

# extract only those with 'ShelveLoc' variable level is "Good",
# and compute the correlation coefficient of 'Sales' variable
# by 'Urban' and 'US' variables.
# And the correlation coefficient is negative and smaller than 0.5
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(ShelveLoc == "Good") %>%
  group_by(Urban, US) %>%
  correlate(Sales) %>%
  filter(coef_corr < 0) %>%
  filter(abs(coef_corr) > 0.5)
#> # A tibble: 7 × 5
#>   Urban US    var1  var2       coef_corr
#>   <chr> <chr> <fct> <fct>          <dbl>
#> 1 No    No    Sales Income        -1    
#> 2 No    No    Sales Population    -0.530
#> 3 No    No    Sales Price         -0.838
#> 4 No    Yes   Sales Price         -0.644
#> 5 Yes   No    Sales Price         -0.833
#> 6 Yes   No    Sales Age           -0.649
#> 7 Yes   Yes   Sales Price         -0.559

Visualize correlation plot of numerical columns in the DBMS

# Extract only those with 'ShelveLoc' variable level is "Good",
# and visualize correlation plot of 'Sales' variable by 'Urban'
# and 'US' variables.
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(ShelveLoc == "Good") %>%
  group_by(Urban, US) %>%
  correlate(Sales) %>% 
  plot()

EDA based on target variable

The following is an EDA where the target column is character and the predictor column is a numeric type.

# If the target variable is a categorical variable
categ <- target_by(con_sqlite %>% tbl("TB_CARSEATS") , US)

# If the variable of interest is a numarical variable
cat_num <- relate(categ, Sales)
cat_num
#> # A tibble: 3 × 27
#>   described_varia… US        n    na  mean    sd se_mean   IQR skewness kurtosis
#>   <chr>            <fct> <int> <int> <dbl> <dbl>   <dbl> <dbl>    <dbl>    <dbl>
#> 1 Sales            No      142     0  6.82  2.60   0.218  3.44   0.323    0.808 
#> 2 Sales            Yes     258     0  7.87  2.88   0.179  4.23   0.0760  -0.326 
#> 3 Sales            total   400     0  7.50  2.82   0.141  3.93   0.186   -0.0809
#> # … with 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>,
#> #   p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>,
#> #   p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>,
#> #   p100 <dbl>
summary(cat_num)
#>  described_variables     US          n               na         mean      
#>  Length:3            No   :1   Min.   :142.0   Min.   :0   Min.   :6.823  
#>  Class :character    Yes  :1   1st Qu.:200.0   1st Qu.:0   1st Qu.:7.160  
#>  Mode  :character    total:1   Median :258.0   Median :0   Median :7.496  
#>                                Mean   :266.7   Mean   :0   Mean   :7.395  
#>                                3rd Qu.:329.0   3rd Qu.:0   3rd Qu.:7.682  
#>                                Max.   :400.0   Max.   :0   Max.   :7.867  
#>        sd           se_mean            IQR           skewness      
#>  Min.   :2.603   Min.   :0.1412   Min.   :3.442   Min.   :0.07603  
#>  1st Qu.:2.713   1st Qu.:0.1602   1st Qu.:3.686   1st Qu.:0.13080  
#>  Median :2.824   Median :0.1791   Median :3.930   Median :0.18556  
#>  Mean   :2.768   Mean   :0.1796   Mean   :3.866   Mean   :0.19489  
#>  3rd Qu.:2.851   3rd Qu.:0.1988   3rd Qu.:4.077   3rd Qu.:0.25432  
#>  Max.   :2.877   Max.   :0.2184   Max.   :4.225   Max.   :0.32308  
#>     kurtosis             p00              p01              p05       
#>  Min.   :-0.32638   Min.   :0.0000   Min.   :0.4675   Min.   :3.147  
#>  1st Qu.:-0.20363   1st Qu.:0.0000   1st Qu.:0.6868   1st Qu.:3.148  
#>  Median :-0.08088   Median :0.0000   Median :0.9062   Median :3.149  
#>  Mean   : 0.13350   Mean   :0.1233   Mean   :1.0072   Mean   :3.183  
#>  3rd Qu.: 0.36344   3rd Qu.:0.1850   3rd Qu.:1.2771   3rd Qu.:3.200  
#>  Max.   : 0.80776   Max.   :0.3700   Max.   :1.6480   Max.   :3.252  
#>       p10             p20             p25             p30       
#>  Min.   :3.917   Min.   :4.754   Min.   :5.080   Min.   :5.306  
#>  1st Qu.:4.018   1st Qu.:4.910   1st Qu.:5.235   1st Qu.:5.587  
#>  Median :4.119   Median :5.066   Median :5.390   Median :5.867  
#>  Mean   :4.073   Mean   :5.051   Mean   :5.411   Mean   :5.775  
#>  3rd Qu.:4.152   3rd Qu.:5.199   3rd Qu.:5.576   3rd Qu.:6.010  
#>  Max.   :4.184   Max.   :5.332   Max.   :5.763   Max.   :6.153  
#>       p40             p50             p60             p70       
#>  Min.   :5.994   Min.   :6.660   Min.   :7.496   Min.   :7.957  
#>  1st Qu.:6.301   1st Qu.:7.075   1st Qu.:7.787   1st Qu.:8.386  
#>  Median :6.608   Median :7.490   Median :8.078   Median :8.815  
#>  Mean   :6.506   Mean   :7.313   Mean   :8.076   Mean   :8.740  
#>  3rd Qu.:6.762   3rd Qu.:7.640   3rd Qu.:8.366   3rd Qu.:9.132  
#>  Max.   :6.916   Max.   :7.790   Max.   :8.654   Max.   :9.449  
#>       p75             p80              p90              p95       
#>  Min.   :8.523   Min.   : 8.772   Min.   : 9.349   Min.   :11.28  
#>  1st Qu.:8.921   1st Qu.: 9.265   1st Qu.:10.325   1st Qu.:11.86  
#>  Median :9.320   Median : 9.758   Median :11.300   Median :12.44  
#>  Mean   :9.277   Mean   : 9.665   Mean   :10.795   Mean   :12.08  
#>  3rd Qu.:9.654   3rd Qu.:10.111   3rd Qu.:11.518   3rd Qu.:12.49  
#>  Max.   :9.988   Max.   :10.464   Max.   :11.736   Max.   :12.54  
#>       p99             p100      
#>  Min.   :13.64   Min.   :14.90  
#>  1st Qu.:13.78   1st Qu.:15.59  
#>  Median :13.91   Median :16.27  
#>  Mean   :13.86   Mean   :15.81  
#>  3rd Qu.:13.97   3rd Qu.:16.27  
#>  Max.   :14.03   Max.   :16.27
plot(cat_num)

Reporting the information of EDA for table of the DBMS

The following shows several examples of creating an EDA report for a DBMS table.

Using the collect_size argument, you can perform EDA with the corresponding number of sample data. If the number of data is very large, use collect_size.

# create html file. file name is EDA_TB_CARSEATS.html
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  eda_web_report(US, output_file = "EDA_TB_CARSEATS.html")

## target variable is numerical variable
# reporting the EDA information, and collect size is 350
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  eda_web_report(Sales, collect_size = 350)

# create pdf file. file name is EDA2.pdf
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  eda_paged_report("Sales", output_file = "EDA2.pdf")

About

Tools for Data Diagnosis, Exploration, Transformation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 77.5%
  • CSS 21.4%
  • HTML 1.1%